Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Phys ; 31(3): 463-76, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15070242

RESUMO

We present an investigation into the use of a fast video-based electronic portal-imaging device (EPID) to study intensity modulated radiation therapy (IMRT) delivery. The aim of this study is to test the feasibility of using an EPID system to independently measure the orchestration of collimator leaf motion and beam fluence; simultaneously measuring both the delivered field fluence and shape as it exits the accelerator head during IMRT delivery. A fast EPID that consists of a terbium-doped gadolinium oxysulphide (GdO2S:Tb) scintillator coupled with an inexpensive commercial 30 frames-per-second (FPS) CCD-video recorder (16.7 ms shutter time) was employed for imaging IMRT delivery. The measurements were performed on a Varian 2100 C/D linear accelerator equipped with a 120-leaf multileaf-collimator (MLC). A characterization of the EPID was performed that included measurements of spatial resolution, linac pulse-rate dependence, linear output response, signal uniformity, and imaging artifacts. The average pixel intensity for fields imaged with the EPID was found to be linear in the delivered monitor units of static non-IMRT fields between 3x3 and 15x15 cm2. A systematic increase of the average pixel intensity was observed with increasing field size, leading to a maximum variation of 8%. Deliveries of a clinical step-and-shoot mode leaf sequence were imaged at 600 MU/min. Measurements from this IMRT delivery were compared with experimentally validated MLC controller log files and were found to agree to within 5%. An analysis of the EPID image data allowed identification of three types of errors: (1) 5 out of 35 segments were undelivered; (2) redistributing all of the delivered segment MUs; and (3) leaf movement during segment delivery. Measurements with the EPID at lower dose rates showed poor agreement with log files due to an aliasing artifact. The study was extended to use a high-speed camera (1-1000 FPS and 10 micros shutter time) with our EPID to image the same delivery to demonstrate the feasibility of imaging without aliasing artifacts. High-speed imaging was shown to be a promising direction toward validating IMRT deliveries with reasonable image resolution and noise.


Assuntos
Microscopia de Vídeo/métodos , Radioterapia Conformacional/métodos , Elétrons , Gadolínio/química , Humanos , Processamento de Imagem Assistida por Computador , Radiometria/métodos
2.
Med Phys ; 31(6): 1593-602, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15259664

RESUMO

We present a study to evaluate the monitor unit (MU), dosimetric, and leaf-motion errors found in the delivery of 91 step-and-shoot IMRT treatment plans performed at three nominal dose rates using a dual modality high energy Linac (Varian 2100 C/D, Varian Medical Systems Inc., Palo Alto, CA) equipped with a 120-leaf multileaf collimator (MLC). The analysis was performed by studying log files generated by the MLC controller system. Recent studies by our group have validated that the automatically generated MLC log files accurately record the actual system delivery. A total of 635 beams were delivered at three nominal dose rates: 100, 300, and 600 MU/min. The log files were manually retrieved and analysis software was developed to extract the recorded MU delivery and leaf positions for each segment. Our analysis revealed that the magnitude of segment MU errors were independent of the planned segment MUs. Segment MU errors were found to increase with dose rate having maximum errors per segment of +/-1.8 MU at 600 MU/min, +/-0.8 MU at 300 MU/min, and +/-0.5 MU at 100 MU/min. The total absolute MU error in each plan was observed to increase with the number of plan segments, with the trend increasing more rapidly for higher dose rates. Three dimensional dose distributions were recomputed based on the observed segment MU errors for three plans with large cumulative absolute MU errors. Comparison with the original treatment plans indicated no clinically significant consequences due to these errors. In addition, approximately 80% of the total segment deliveries reported at least one collimator leaf moving at least 1 mm (projected at isocenter) during segment delivery. Such errors occur near the end of segment delivery and have been previously observed by our group using a fast video-based electronic portal imaging device. At 600 MU/min, between 5% and 23% of the plan MUs were delivered during leaf motion that had exceeded a 1 mm position tolerance. These leaf motion errors were not included in the treatment plan recalculations performed in this study.


Assuntos
Radioterapia Conformacional/estatística & dados numéricos , Fenômenos Biofísicos , Biofísica , Humanos , Movimento (Física) , Neoplasias/radioterapia , Controle de Qualidade , Planejamento da Radioterapia Assistida por Computador/normas , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia Conformacional/normas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa