RESUMO
STUDY QUESTION: Can a combination of the focussed protein kinase assays and a wide-scale proteomic screen pinpoint novel, clinically relevant players in decidualization in vitro and in vivo? SUMMARY ANSWER: Rho-dependent protein kinase (ROCK) activity is elevated in response to the combined treatment with progesterone and 8-Br-cAMP during in vitro decidualization, mirrored by increase of ROCK2 mRNA and protein levels and the phosphorylation levels of its downstream target Cofilin-1 (CFL1) in secretory versus proliferative endometrium. WHAT IS KNOWN ALREADY: Decidualization is associated with extensive changes in gene expression profile, proliferation, metabolism and morphology of endometrium, yet only a few underlying molecular pathways have been systematically explored. In vitro decidualization of endometrial stromal cells (ESCs) can be reportedly induced using multiple protocols with variable physiological relevance. In our previous studies, cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA)/prolactin axis that is classically upregulated during decidualization showed dampened activation in ESCs isolated from polycystic ovary syndrome (PCOS) patients as compared to controls. STUDY DESIGN, SIZE, DURATION: In vitro decidualization studies were carried out in passage 2 ESCs isolated from controls (N = 15) and PCOS patients (N = 9). In parallel, lysates of non-cultured ESCs isolated from proliferative (N = 4) or secretory (N = 4) endometrial tissue were explored. The observed trends were confirmed using cryo-cut samples of proliferative (N = 3) or secretory endometrium (N = 3), and in proliferative or secretory full tissue samples from controls (N = 8 and N = 9, respectively) or PCOS patients (N = 10 for both phases). PARTICIPANTS/MATERIALS, SETTING, METHODS: The activities of four target kinases were explored using kinase-responsive probes and selective inhibitors in lysates of in vitro decidualized ESCs and non-cultured ESCs isolated from tissue at different phases of the menstrual cycle. In the latter lysates, wide-scale proteomic and phosphoproteomic studies were further carried out. ROCK2 mRNA expression was explored in full tissue samples from controls or PCOS patients. The immunofluorescent staining of phosphorylated CFL1 was performed in full endometrial tissue samples, and in the in vitro decidualized fixed ESCs from controls or PCOS patients. Finally, the cellular migration properties were explored in live in vitro decidualized ESCs. MAIN RESULTS AND THE ROLE OF CHANCE: During in vitro decidualization, the activities of PKA, protein kinase B (Akt/PKB), and ROCK are increased while the activity of casein kinase 2 (CK2) is decreased; these initial trends are observable after 4-day treatment (P < 0.05) and are further augmented following the 9-day treatment (P < 0.001) with mixtures containing progesterone and 8-Br-cAMP or forskolin. The presence of progesterone is necessary for activation of ROCK, yet it is dispensable in the case of PKA and Akt/PKB; in comparison to controls, PCOS patient-derived ESCs feature dampened response to progesterone. In non-cultured ESCs isolated from secretory vs proliferative phase tissue, only activity of ROCK is increased (P < 0.01). ROCK2 protein levels are slightly elevated in secretory versus proliferative ESCs (relative mean standard deviation < 50%), and ROCK2 mRNA is elevated in mid-secretory versus proliferative full tissue samples (P < 0.05) obtained from controls but not PCOS patients. Activation of ROCK2 downstream signalling results in increase of phospho-S3 CFL1 in secretory endometrium (P < 0.001) as well as in vitro decidualized ESCs (P < 0.01) from controls but not PCOS patients. ROCK2-triggered alterations in the cytoskeleton are reflected by the significantly decreased motility of in vitro decidualized ESCs (P < 0.05). LARGE SCALE DATA: Proteomic and phosphoproteomic data are available via ProteomeXchange with identifier PXD026243. LIMITATIONS, REASONS FOR CAUTION: The number of biological samples was limited. The duration of protocol for isolation of non-cultured ESCs from tissue can potentially affect phosphorylation pathways in cells, yet the possible artefacts were minimized by the identical treatment of proliferative and secretory samples. WIDER IMPLICATIONS OF THE FINDINGS: The study demonstrated the benefits of combining the focussed kinase activity assay with wide-scale phosphoproteomics and showed the need for detailed elaboration of the in vitro decidualization protocols. ROCK was identified as the novel target of interest in decidualization, which requires closer attention in further studies-including the context of decidualization-related subfertility and infertility. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the Estonian Ministry of Education and Research, and the Estonian Research Council (PRG1076, PRG454, PSG230 and PSG608), Enterprise Estonia (EU48695), Horizon 2020 innovation grant (ERIN, Grant no. EU952516) of the European Commission, the COMBIVET ERA Chair, H2020-WIDESPREAD-2018-04 (Grant agreement no. 857418), the Academy of Finland (Project grants 315921 and 321763), the Finnish Medical Foundation and The Sigrid Juselius Foundation. The authors confirm that they have no conflict of interest with respect to the content of this article.
Assuntos
Progesterona , Quinases Associadas a rho , Fatores de Despolimerização de Actina , Endométrio , Feminino , Humanos , Proteômica , Células Estromais , Quinases Associadas a rho/genéticaRESUMO
RESEARCH QUESTION: How does mucin MUC20 expression change during the menstrual cycle in different cell types of human endometrium? DESIGN: Study involved examination of MUC20 expression in two previously published RNA-seq datasets in whole endometrial tissue (nâ¯=â¯10), sorted endometrial epithelial (nâ¯=â¯44) or stromal (nâ¯=â¯42) cell samples. RNA-Seq results were validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) in whole tissue (nâ¯=â¯10), sorted epithelial (nâ¯=â¯17) and stromal (nâ¯=â¯17) cell samples. MUC20 protein localization and expression were analysed in human endometrium by immunohistochemical analysis of intact endometrial tissue (nâ¯=â¯6) and also Western blot of cultured stromal and epithelial cells (nâ¯=â¯2). RESULTS: MUC20 is differentially expressed in the endometrium between the pre-receptive and receptive phases. We show that MUC20 is predominantly expressed by epithelial cells of the receptive endometrium, both at the mRNA (RNA-Seq, Pâ¯=â¯0.005; qRT-PCR, Pâ¯=â¯0.039) and protein levels (Western blot; immunohistochemistry, Pâ¯=â¯0.029). CONCLUSION: Our results indicate MUC20 as a novel marker of mid-secretory endometrial biology. We propose a model of MUC20 function in the hepatocyte growth factor (HGF)-activated mesenchymal-epithelial transition (MET) receptor signalling specifically in the receptive phase. Further investigations should reveal the precise function of MUC20 in human endometrium and the possible connection between MUC20 and HGF-activated MET receptor signalling. MUC20 could potentially be included in the list of endometrial receptivity markers after further clinical validation.
Assuntos
Endométrio/metabolismo , Regulação da Expressão Gênica , Ciclo Menstrual/metabolismo , Mucinas/metabolismo , Adulto , Biópsia , Índice de Massa Corporal , Citoplasma/metabolismo , Implantação do Embrião , Células Epiteliais/metabolismo , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA-SeqRESUMO
Endometriosis is a chronic hormone-dependent disease characterized by the spread of endometrial cells outside the uterus, which form endometriotic lesions and disrupt the functions of the affected organs. The etiopathogenesis of endometriosis is still unclear, and thus it is important to examine the genes that may contribute to the establishment of endometriotic lesions. The aim of this study was to investigate the expression of new potential candidate gene latexin (LXN), an inhibitor of carboxypeptidases, in endometrium and endometriotic lesions to elucidate its possible role in endometriosis development. LXN expression in tissues was assessed using quantitative reverse transcription PCR (qRT-PCR) analysis and immunohistochemical staining (IHC). The functions of LXN were examined using Transwell and MTT assays. qRT-PCR analysis revealed that LXN expression in endometrium was menstrual cycle-dependent, being lowest in the early-secretory phase and highest in the late-secretory phase and was significantly upregulated in endometriotic lesions. IHC confirmed LXN expression in endometrial stromal cells, and in vitro assays demonstrated that knockdown of LXN effectively reduced the migratory capacity of endometrial stromal cells while promoting cell viability. In conclusion, our results showed that LXN can be involved in the pathogenesis of endometriosis by regulating the proliferation and migration activity of endometriotic stromal cells.
Assuntos
Endometriose , Endométrio , Ciclo Menstrual , Regulação para Cima , Humanos , Feminino , Endometriose/genética , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Adulto , Células Estromais/metabolismo , Células Estromais/patologia , Movimento Celular/genética , Proliferação de Células , Carboxipeptidases/genética , Carboxipeptidases/metabolismoRESUMO
The maintenance of the pluripotency of human embryonic stem (hES) cells requires special conditions for culturing. These conditions include specific growth factors containing media and extracellular matrix (ECM) or an appropriate substrate for adhesion. Interactions between the cells and ECM are mediated by integrins, which interact with the components of ECM in active conformation. This study focused on the characterisation of the role of integrin ß1 in the adhesion, migration and differentiation of hES cells. Blocking integrin ß1 abolished the adhesion of hES cells, decreasing their survival and pluripotency. This effect was in part rescued by the inhibition of RhoA signalling with Y-27632. The presence of Y-27632 increased the migration of hES cells and supported their differentiation into embryoid bodies. The differences in integrin ß1 recycling in the phosphorylation of the myosin light chain and in the localisation of TSC2 were observed between the hES cells growing as a single-cell culture and in a colony. The hES cells at the centre and borders of the colony were found to have differences in their morphology, migration and signalling network activity. We concluded that the availability of integrin ß1 was essential for the contraction, migration and differentiation ability of hES cells.