Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Autoimmunity ; 40(1): 38-47, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17364496

RESUMO

Antibodies against the N-terminal (NT) but not the basic domain (BD), DNA binding regions of the largest subunit (S1) of RNA polymerase I (RNAPI) were detected in the sera of MRL-lpr/lpr lupus mice. Antibodies against both RNAPI(S1)-NT and -BD, as well as other systemic lupus erythematosus (SLE) autoantigens (La, ribosomal P proteins and Sm/RNP) were produced by rabbits immunized with anti-DNA antibodies that had been affinity purified from SLE patients. Immunization of nonautoimmune mice (Balb/c) with RNAPI(S1)-NT, RNAPI(S1)-BD, or La in the form of GST fusion proteins, induced production of anti-double-stranded (ds) DNA and anti-Sm/RNP. GST-P1 did not induce an anti-dsDNA response in these mice. These results demonstrate that RNAPI(S1)-NT, RNAPI(S1)-BD and La can participate in an anti-autoantigen/anti-DNA antibody loop during an SLE-like autoimmune response.


Assuntos
Anticorpos Antinucleares/biossíntese , Autoantígenos/imunologia , Lúpus Eritematoso Sistêmico/imunologia , RNA Polimerase I/imunologia , Ribonucleoproteínas Nucleares Pequenas/imunologia , Animais , Anticorpos Antinucleares/imunologia , Autoantígenos/biossíntese , Autoimunidade/imunologia , Feminino , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos MRL lpr , Estrutura Terciária de Proteína , Coelhos , Ratos , Ribonucleoproteínas/biossíntese , Ribonucleoproteínas/imunologia , Ribonucleoproteínas Nucleares Pequenas/biossíntese , Proteínas Centrais de snRNP , Antígeno SS-B
2.
Autoimmunity ; 37(6-7): 503-14, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15621578

RESUMO

Autoantibodies against RNA polymerase I (RNAPI), DNA, La and ribosomal P proteins were detected in the urine of systemic lupus erythematosus (SLE) patients, many with normal protein excretion rates. In a number of cases, the antibodies were detectable in the urine but not the serum sample of the same patient. The presence and relative concentrations of the urinary autoantibodies correlated with disease activity. RNAPI antigens were detected in the urine of SLE patients by radioimmunoassay and immunoblotting using rabbit antisera prepared against the purified holoenzyme. Immunoaffinity purification of the rabbit anti-RNAPI with SLE urine proteins resulted in antibodies directed primarily against the largest RNAPI subunit (S1; 194 kDa). Antibodies prepared against recombinant fusion proteins representing the DNA binding regions of human RNAPI(S1) reacted with a 35 kDa SLE urinary protein, a putative fragment of RNAPI(S1). Ribosomal protein P0 was detected in SLE patients' urine by immunoblotting, using rabbit antiserum prepared against recombinant human P1 fusion protein. The relative quantities of urinary P0 correlated with disease status. Analysis of urinary autoantibodies and corresponding antigens in conjunction with analysis of serum autoantibodies may be of value for the purpose of monitoring disease activity.


Assuntos
Autoanticorpos/urina , Autoantígenos/urina , Lúpus Eritematoso Sistêmico/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Proteínas de Ciclo Celular , DNA/imunologia , Proteínas de Ligação a DNA/imunologia , Humanos , Lúpus Eritematoso Sistêmico/urina , Componente 3 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/imunologia , RNA Polimerase I/imunologia , Ribonucleoproteínas/imunologia , Fatores de Transcrição/imunologia , Antígeno SS-B
3.
J Psychiatr Res ; 58: 69-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25082653

RESUMO

The main enzyme for serotonin degradation, monoamine oxidase (MAO) A, has recently emerged as a key biological factor in the predisposition to impulsive aggression. Male carriers of low-activity variants of the main functional polymorphism of the MAOA gene (MAOA-uVNTR) have been shown to exhibit a greater proclivity to engage in violent acts. Thus, we hypothesized that low-activity MAOA-uVNTR alleles may be associated with a higher risk for criminal violence among male offenders. To test this possibility, we analyzed the MAOA-uVNTR variants of violent (n = 49) and non-violent (n = 40) male Caucasian and African-American convicts in a correctional facility. All participants were also tested with the Childhood Trauma Questionnaire (CTQ), Barratt Impulsivity Scale (BIS-11) and Buss-Perry Aggression Questionnaire (BPAQ) to assess their levels of childhood trauma exposure, impulsivity and aggression, respectively. Our results revealed a robust (P < 0.0001) association between low-activity MAOA-uVNTR alleles and violent crime. This association was replicated in the group of Caucasian violent offenders (P < 0.01), but reached only a marginal trend (P = 0.08) in their African American counterparts. While violent crime charges were not associated with CTQ, BIS-11 and BPAQ scores, carriers of low-activity alleles exhibited a mild, yet significant (P < 0.05) increase in BIS-11 total and attentional-impulsiveness scores. In summary, these findings support the role of MAOA gene as a prominent genetic determinant for criminal violence. Further studies are required to confirm these results in larger samples of inmates and evaluate potential interactions between MAOA alleles and environmental vulnerability factors.


Assuntos
Criminosos , Repetições Minissatélites/genética , Monoaminoxidase/genética , Violência , Adolescente , Adulto , Idoso , Agressão , Análise de Variância , Estudos de Casos e Controles , Frequência do Gene , Genótipo , Humanos , Comportamento Impulsivo , Masculino , Pessoa de Meia-Idade , Psicometria , Estatística como Assunto , Inquéritos e Questionários , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa