Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 23(19): 9911-8, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17696375

RESUMO

Hydrogen peroxide is a commonly used oxidizer component in chemical mechanical planarization slurries, used in the processing of Cu metallization in microelectronics applications. We studied the electrochemical reduction of hydrogen peroxide on Cu in 0.1 M H2SO4 solutions using methods including cyclic voltammetry, rotating disk electrode experiments, surface-enhanced Raman spectroscopy, and density functional theory (DFT) calculations. The spectroscopy reveals that the hydrogen peroxide molecule is reduced at negative potentials to form a Cu-OH surface species in acidic solutions, a result consistent with the insight from Tafel slope measurements. DFT calculations support the instability of peroxide relative to the surface-coordinated hydroxide on both Cu(111) and Cu(100) surfaces.

2.
J Am Chem Soc ; 129(33): 10171-80, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17655297

RESUMO

Nitrate adsorption and reduction on Cu(100) in acidic solution is studied by electrochemical methods, in situ electrochemical scanning tunneling microscopy (EC-STM), surface enhanced Raman spectroscopy (SERS), and density functional theory (DFT) calculations. Electrochemical results show that reduction of nitrate starts at -0.3 V vs Ag/AgCl and reaches maximum value at -0.58 V. Over the entire potential region interrogated adlayers composed of nitrate, nitrite, or other intermediates are observed by using in situ STM. From the open-circuit potential (OCP) to -0.22 V vs Ag|AgCl, the nitrate ion is dominant and forms a (2 x 2) adlattice on the Cu(100) surface while nitrate forms a dominantly c(2 x 2) structure from -0.25 to -0.36 V. The interconversion between the nitrate and nitrite adlattices is observed. DFT calculations indicate that both nitrate and nitrite are twofold coordinated to the Cu(100) surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa