Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(8): 5044-51, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25836755

RESUMO

Chronic Pb exposure microcosm studies were carried out on two different periphyton communities over the course of 3 weeks to link Pb distribution to biological effects in periphyton. We show that three-week exposures of periphyton to 20.6 ± 0.4 µM PbT (330 nM Pb(2+)) did not have observable biological effects on photosynthesis, respiration, extracellular enzymatic activities, or biomass accrual. Metal distribution studies showed that the majority of Pb was associated with the operationally defined sorbed and non-EDTA-exchangeable fractions, and relatively little with extracellular polymeric substances (EPS). No significant effects of Pb on Fe and Mn distributions were observed, whereas higher Cu accumulation occurred from increased free Cu(2+) in the exposure medium. High Fe:C and Mn:C ratios indicated the presence of inorganic Fe and Mn material associated with the non-EDTA-exchangeable fraction, which likely sequesters Pb and explains the absence of measurable biological effects. Although no toxic effects of Pb were observed on the periphytic organisms themselves, periphyton can be a significant source of Pb to grazing organisms in aquatic ecosystems.


Assuntos
Chumbo/toxicidade , Metais Pesados/metabolismo , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biomassa , Ecossistema , Chumbo/análise , Metais Pesados/análise , Fitoplâncton/química , Fitoplâncton/metabolismo , Testes de Toxicidade Crônica
2.
Chimia (Aarau) ; 68(5): 331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983811

RESUMO

Two PhD students reflect on their experience and impressions of the latest CH analysis 2013 conference, held at Beatenberg this past November.


Assuntos
Técnicas de Química Analítica , Química Analítica , Estudos de Avaliação como Assunto , Congressos como Assunto , Educação de Pós-Graduação , Humanos , Fatores de Tempo
3.
Aquat Toxicol ; 256: 106411, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716651

RESUMO

The bioavailability of metal complexes is poorly understood. To evaluate bioavailability and toxicity of neutral and charged complexes as well as free metal ions, Visual Minteq, a chemical equilibrium model, was used to design media containing different metal species. Two non-essential (silver and cadmium) and two essential (copper and zinc) metals were selected. The rainbow trout (Oncorhynchus mykiss) gut cell line (RTgutGC) was used to investigate bioavailability, bioreactivity and toxicity of the different metal species. Toxicity was measured using a multiple endpoint cytotoxicity assay, bioavailability by measuring intracellular metal concentration, and bioreactivity by quantification of mRNA level of the metal responsive genes, metallothionein (MT), glutathione reductase (GR) and zinc transporter 1 (ZnT1). Speciation calculations showed that silver and cadmium preferentially bind chloride, copper phosphate and bicarbonate, and zinc remained primarily as a free ion. Cysteine avidly complexed with all metals reducing toxicity, bioavailability and bioreactivity. Silver and copper toxicity was not affected by inorganic metal speciation, whereas cadmium and zinc toxicity was decreased by chloride complexation. Moreover, reduction of calcium concentration in the medium increased toxicity and bioavailability of cadmium and zinc. Bioavailability of silver and zinc was reduced by low chloride while cadmium bioavailability was increased by low chloride and in presence of bicarbonate. Copper bioavailability was not affected by the medium composition. Cadmium and silver were more bioreactive, independently from the medium composition, in comparison to copper and zinc (i.e., higher induction of MT and GR). Cadmium was the only metal able to induce MT in presence of cysteine. ZnT1 was induced by cadmium in low-chloride, by zinc in low-chloride low-calcium and by cadmium and copper in the bicarbonate media. Overall, this study demonstrates that metal complexation alone is not sufficient to explain metal toxicity, and that anion exchange mechanisms play a role in metal uptake and bioreactivity.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Cobre/metabolismo , Cádmio/metabolismo , Cálcio/metabolismo , Prata , Cloretos/metabolismo , Cisteína/metabolismo , Bicarbonatos , Poluentes Químicos da Água/toxicidade , Linhagem Celular , Zinco/metabolismo , Oncorhynchus mykiss/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo
4.
Redox Biol ; 62: 102712, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116256

RESUMO

Zinc is an important component of cellular antioxidant defenses and dysregulation of zinc homeostasis is a risk factor for coronary heart disease and ischemia/reperfusion injury. Intracellular homeostasis of metals, such as zinc, iron and calcium are interrelated with cellular responses to oxidative stress. Most cells experience significantly lower oxygen levels in vivo (2-10 kPa O2) compared to standard in vitro cell culture (18kPa O2). We report the first evidence that total intracellular zinc content decreases significantly in human coronary artery endothelial cells (HCAEC), but not in human coronary artery smooth muscle cells (HCASMC), after lowering of O2 levels from hyperoxia (18 kPa O2) to physiological normoxia (5 kPa O2) and hypoxia (1 kPa O2). This was paralleled by O2-dependent differences in redox phenotype based on measurements of glutathione, ATP and NRF2-targeted protein expression in HCAEC and HCASMC. NRF2-induced NQO1 expression was attenuated in both HCAEC and HCASMC under 5 kPa O2 compared to 18 kPa O2. Expression of the zinc efflux transporter ZnT1 increased in HCAEC under 5 kPa O2, whilst expression of the zinc-binding protein metallothionine (MT) decreased as O2 levels were lowered from 18 to 1 kPa O2. Negligible changes in ZnT1 and MT expression were observed in HCASMC. Silencing NRF2 transcription reduced total intracellular zinc under 18 kPa O2 in HCAEC with negligible changes in HCASMC, whilst NRF2 activation or overexpression increased zinc content in HCAEC, but not HCASMC, under 5 kPa O2. This study has identified cell type specific changes in the redox phenotype and metal profile in human coronary artery cells under physiological O2 levels. Our findings provide novel insights into the effect of NRF2 signaling on Zn content and may inform targeted therapies for cardiovascular diseases.


Assuntos
Células Endoteliais , Hiperóxia , Humanos , Células Endoteliais/metabolismo , Hiperóxia/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Oxigênio/metabolismo , Zinco/metabolismo
5.
Redox Biol ; 64: 102777, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315344

RESUMO

Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 µM ZnCl2 + 0.5 µM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.


Assuntos
Vasos Coronários , Hiperóxia , Humanos , Vasos Coronários/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Hiperóxia/metabolismo , Glutationa/metabolismo , RNA Mensageiro/metabolismo , Suplementos Nutricionais
6.
Front Endocrinol (Lausanne) ; 14: 1171933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396167

RESUMO

Introduction: Common variants in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8 (expressed largely in pancreatic islet alpha and beta cells), are associated with altered risk of type 2 diabetes. Unexpectedly, rare loss-of-function (LoF) variants in the gene, described in heterozygous individuals only, are protective against the disease, even though knockout of the homologous SLC30A8 gene in mice leads to unchanged or impaired glucose tolerance. Here, we aimed to determine how one or two copies of the mutant R138X allele in the mouse SLC30A8 gene impacts the homeostasis of zinc at a whole-body (using non-invasive 62Zn PET imaging to assess the acute dynamics of zinc handling) and tissue/cell level [using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to map the long-term distribution of zinc and manganese in the pancreas]. Methods: Following intravenous administration of [62Zn]Zn-citrate (~7 MBq, 150 µl) in wild-type (WT), heterozygous (R138X+/-), and homozygous (R138X+/+) mutant mice (14-15 weeks old, n = 4 per genotype), zinc dynamics were measured over 60 min using PET. Histological, islet hormone immunohistochemistry, and elemental analysis with LA-ICP-MS (Zn, Mn, P) were performed on sequential pancreas sections. Bulk Zn and Mn concentration in the pancreas was determined by solution ICP-MS. Results: Our findings reveal that whereas uptake into organs, assessed using PET imaging of 62Zn, is largely unaffected by the R138X variant, mice homozygous of the mutant allele show a substantial lowering (to 40% of WT) of total islet zinc, as anticipated. In contrast, mice heterozygous for this allele, thus mimicking human carriers of LoF alleles, show markedly increased endocrine and exocrine zinc content (1.6-fold increase for both compared to WT), as measured by LA-ICP-MS. Both endocrine and exocrine manganese contents were also sharply increased in R138X+/- mice, with smaller increases observed in R138X+/+ mice. Discussion: These data challenge the view that zinc depletion from the beta cell is the likely underlying driver for protection from type 2 diabetes development in carriers of LoF alleles. Instead, they suggest that heterozygous LoF may paradoxically increase pancreatic ß-cell zinc and manganese content and impact the levels of these metals in the exocrine pancreas to improve insulin secretion.


Assuntos
Proteínas de Transporte de Cátions , Diabetes Mellitus Tipo 2 , Animais , Humanos , Camundongos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Manganês/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Hormônios Pancreáticos/metabolismo , Tomografia por Emissão de Pósitrons , Zinco/metabolismo , Transportador 8 de Zinco/genética
7.
Zebrafish ; 18(4): 252-264, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227897

RESUMO

Metals and metalloids are integral to biological processes and play key roles in physiology and metabolism. Nonetheless, overexposure to some metals or lack of others can lead to serious health consequences. In this study, eight zebrafish facilities collaborated to generate a multielement analysis of their centralized recirculating water systems. We report a first set of average concentrations for 46 elements detected in zebrafish facilities. Our results help to establish an initial baseline for trouble-shooting purposes, and in general for safe ranges of metal concentrations in recirculating water systems, supporting reproducible scientific research outcomes with zebrafish.


Assuntos
Metaloides , Poluentes Químicos da Água , Animais , Metaloides/análise , Metaloides/metabolismo , Água , Poluentes Químicos da Água/análise , Peixe-Zebra/metabolismo
8.
Cancer Res ; 81(13): 3480-3494, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34127497

RESUMO

Succinate dehydrogenase is a key enzyme in the tricarboxylic acid cycle and the electron transport chain. All four subunits of succinate dehydrogenase are tumor suppressor genes predisposing to paraganglioma, but only mutations in the SDHB subunit are associated with increased risk of metastasis. Here we generated an Sdhd knockout chromaffin cell line and compared it with Sdhb-deficient cells. Both cell types exhibited similar SDH loss of function, metabolic adaptation, and succinate accumulation. In contrast, Sdhb-/- cells showed hallmarks of mesenchymal transition associated with increased DNA hypermethylation and a stronger pseudo-hypoxic phenotype compared with Sdhd-/- cells. Loss of SDHB specifically led to increased oxidative stress associated with dysregulated iron and copper homeostasis in the absence of NRF2 activation. High-dose ascorbate exacerbated the increase in mitochondrial reactive oxygen species, leading to cell death in Sdhb-/- cells. These data establish a mechanism linking oxidative stress to iron homeostasis that specifically occurs in Sdhb-deficient cells and may promote metastasis. They also highlight high-dose ascorbate as a promising therapeutic strategy for SDHB-related cancers. SIGNIFICANCE: Loss of different succinate dehydrogenase subunits can lead to different cell and tumor phenotypes, linking stronger 2-OG-dependent dioxygenases inhibition, iron overload, and ROS accumulation following SDHB mutation.


Assuntos
Ácido Ascórbico/farmacologia , Homeostase , Ferro/metabolismo , Mutação , Estresse Oxidativo , Succinato Desidrogenase/fisiologia , Animais , Antioxidantes/farmacologia , Dioxigenases/antagonistas & inibidores , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fenótipo , Espécies Reativas de Oxigênio
9.
Metallomics ; 11(1): 29-49, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30499574

RESUMO

To know how much of a metal species is in a particular location within a biological context at any given time is essential for understanding the intricate roles of metals in biology and is the fundamental question upon which the field of metallomics was born. Simply put, seeing is powerful. With the combination of spectroscopy and microscopy, we can now see metals within complex biological matrices complemented by information about associated molecules and their structures. With the addition of mass spectrometry and particle beam based techniques, the field of view grows to cover greater sensitivities and spatial resolutions, addressing structural, functional and quantitative metallomic questions from the atomic level to whole body processes. In this perspective, I present a paradigm shift in the way we relate to and integrate current and developing metallomic analytics, highlighting both familiar and perhaps less well-known state of the art techniques for in situ metallomic imaging, specific biological applications, and their use in correlative studies. There is a genuine need to abandon scientific silos and, through the establishment of a metallomic scientific platform for further development of multidimensional analytics for in situ metallomic imaging, we have an incredible opportunity to enhance the field of metallomics and demonstrate how discovery research can be done more effectively.


Assuntos
Metaloproteínas/análise , Metais/análise , Animais , Biologia Computacional/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Microscopia/métodos , Microscopia Eletrônica/métodos , Imagem Óptica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
10.
Met Ions Life Sci ; 172017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28731298

RESUMO

The biogeochemical cycles of lead (Pb) have been largely affected by anthropogenic activities as a result of its high natural abundance and use over the centuries [1]. At sites more strongly impacted by urbanization [2] and mining [3], Pb is found at high nano to low micromolar concentrations in surface waters, and can be significantly higher in soil and sediment [4]. Microorganisms are found everywhere and their responses to Pb exposure can range from resistant to highly sensitive [5, 6]. These varying levels of toxicity can be attributed to the cellular handling of Pb, making it important to understand the role of intracellular Pb speciation for more accurate toxicity predictions.


Assuntos
Bactérias/química , Técnicas de Química Analítica/métodos , Fungos/química , Chumbo/química , Microalgas/química , Peso Molecular
11.
Environ Sci Pollut Res Int ; 20(5): 3214-23, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23065603

RESUMO

A protocol was developed to extract, fractionate, and quantitatively analyze periphyton extracellular polymeric substances (EPS), which obtains both information on the molecular weight (M r) distribution and protein and polysaccharide content. The EPS were extracted from freshwater periphyton between July and December 2011. Organic carbon (OC) compounds from different EPS extracts were analyzed using liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND), and total protein and polysaccharide content were quantified. Four distinct OC fractions, on the basis of M r, were identified in all extracts, corresponding to high M r biopolymers (≥80-4 kDa), degradation products of humic substances (M r not available), low M r acids (10-0.7 kDa), and small amphiphilic/neutral compounds (3-0.5 kDa). Low C/N ratios (4.3 ± 0.8) were calculated for the biopolymer fractions, which represented 16-38 % of the measured dissolved organic carbon (DOC), indicating a significant presence of high M r proteins in the EPS. Protein and polysaccharide represented the two major components of EPS and, when combined, accounted for the measured DOC in extracts. Differences in specific OC fractions of EPS extracts over the course of the study could be quantified using this method. This study suggests that LC-OCD-OND is a new valuable tool in EPS characterization of periphyton.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Biopolímeros/metabolismo , Metais/metabolismo , Polissacarídeos/metabolismo , Proteínas/metabolismo , Biopolímeros/análise , Carbono/química , Cromatografia em Gel , Água Doce/microbiologia , Metais/análise , Peso Molecular , Nitrogênio/química , Compostos Orgânicos/química , Polissacarídeos/análise , Proteínas/análise , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa