Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 14(3): e1007271, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29529025

RESUMO

Forkhead box (FOXO) proteins are evolutionarily conserved, stress-responsive transcription factors (TFs) that can promote or counteract cell death. Mutations in FOXO genes are implicated in numerous pathologies, including age-dependent neurodegenerative disorders, such as Parkinson's disease (PD). However, the complex regulation and downstream mechanisms of FOXOs present a challenge in understanding their roles in the pathogenesis of PD. Here, we investigate the involvement of FOXO in the death of dopaminergic (DA) neurons, the key pathological feature of PD, in Drosophila. We show that dFOXO null mutants exhibit a selective loss of DA neurons in the subgroup crucial for locomotion, the protocerebral anterior medial (PAM) cluster, during development as well as in adulthood. PAM neuron-targeted adult-restricted knockdown demonstrates that dFOXO in adult PAM neurons tissue-autonomously promotes neuronal survival during aging. We further show that dFOXO and the bHLH-TF 48-related-2 (FER2) act in parallel to protect PAM neurons from different forms of cellular stress. Remarkably, however, dFOXO and FER2 share common downstream processes leading to the regulation of autophagy and mitochondrial morphology. Thus, overexpression of one can rescue the loss of function of the other. These results indicate a role of dFOXO in neuroprotection and highlight the notion that multiple genetic and environmental factors interact to increase the risk of DA neuron degeneration and the development of PD.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neuroproteção , Doença de Parkinson/patologia , Animais , Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sobrevivência Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Transcrição Forkhead/genética , Mitocôndrias/metabolismo , Mutação , Doença de Parkinson/metabolismo
2.
Fly (Austin) ; 17(1): 2192847, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36959085

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, afflicting over 1% of the population of age 60 y and above. The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is the primary cause of its characteristic motor symptoms. Studies using Drosophila melanogaster and other model systems have provided much insight into the pathogenesis of PD. However, little is known why certain cell types are selectively susceptible to degeneration in PD. Here, we describe an approach to identify vulnerable subpopulations of neurons in the genetic background linked to PD in Drosophila, using the split-GAL4 drivers that enable genetic manipulation of a small number of defined cell populations. We identify split-GAL4 lines that target neurons selectively vulnerable in a model of leucine-rich repeat kinase 2 (LRRK2)-linked familial PD, demonstrating the utility of this approach. We also show an unexpected caveat of the split-GAL4 system in ageing-related research: an age-dependent increase in the number of GAL4-labelled cells.


Assuntos
Proteínas de Drosophila , Doença de Parkinson , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos Transgênicos , Doença de Parkinson/genética , Fatores de Transcrição/metabolismo
3.
Nat Commun ; 13(1): 1426, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301315

RESUMO

Progressive degeneration of dopaminergic (DA) neurons in the substantia nigra is a hallmark of Parkinson's disease (PD). Dysregulation of developmental transcription factors is implicated in dopaminergic neurodegeneration, but the underlying molecular mechanisms remain largely unknown. Drosophila Fer2 is a prime example of a developmental transcription factor required for the birth and maintenance of midbrain DA neurons. Using an approach combining ChIP-seq, RNA-seq, and genetic epistasis experiments with PD-linked genes, here we demonstrate that Fer2 controls a transcriptional network to maintain mitochondrial structure and function, and thus confers dopaminergic neuroprotection against genetic and oxidative insults. We further show that conditional ablation of Nato3, a mouse homolog of Fer2, in differentiated DA neurons causes mitochondrial abnormalities and locomotor impairments in aged mice. Our results reveal the essential and conserved role of Fer2 homologs in the mitochondrial maintenance of midbrain DA neurons, opening new perspectives for modeling and treating PD.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Animais , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Camundongos , Doença de Parkinson/genética , Substância Negra/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 12(1): 5758, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599173

RESUMO

Various behavioral and cognitive states exhibit circadian variations in animals across phyla including Drosophila melanogaster, in which only ~0.1% of the brain's neurons contain circadian clocks. Clock neurons transmit the timing information to a plethora of non-clock neurons via poorly understood mechanisms. Here, we address the molecular underpinning of this phenomenon by profiling circadian gene expression in non-clock neurons that constitute the mushroom body, the center of associative learning and sleep regulation. We show that circadian clocks drive rhythmic expression of hundreds of genes in mushroom body neurons, including the Neurofibromin 1 (Nf1) tumor suppressor gene and Pka-C1. Circadian clocks also drive calcium rhythms in mushroom body neurons via NF1-cAMP/PKA-C1 signaling, eliciting higher mushroom body activity during the day than at night, thereby promoting daytime wakefulness. These findings reveal the pervasive, non-cell-autonomous circadian regulation of gene expression in the brain and its role in sleep.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/metabolismo , Corpos Pedunculados/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Drosophila melanogaster , Regulação da Expressão Gênica/fisiologia , Modelos Animais , Corpos Pedunculados/citologia , RNA-Seq , Transdução de Sinais/fisiologia , Sono/fisiologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa