Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(41): e2312126120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792516

RESUMO

The dynamic balance between tRNA supply and codon usage demand is a fundamental principle in the cellular translation economy. However, the regulation and functional consequences of this balance remain unclear. Here, we use PARIS2 interactome capture, structure modeling, conservation analysis, RNA-protein interaction analysis, and modification mapping to reveal the targets of hundreds of snoRNAs, many of which were previously considered orphans. We identify a snoRNA-tRNA interaction network that is required for global tRNA modifications, including 2'-O-methylation and others. Loss of Fibrillarin, the snoRNA-guided 2'-O-methyltransferase, induces global upregulation of tRNA fragments, a large group of regulatory RNAs. In particular, the snoRNAs D97/D133 guide the 2'-O-methylation of multiple tRNAs, especially for the amino acid methionine (Met), a protein-intrinsic antioxidant. Loss of D97/D133 snoRNAs in human HEK293 cells reduced target tRNA levels and induced codon adaptation of the transcriptome and translatome. Both single and double knockouts of D97 and D133 in HEK293 cells suppress Met-enriched proliferation-related gene expression programs, including, translation, splicing, and mitochondrial energy metabolism, and promote Met-depleted programs related to development, differentiation, and morphogenesis. In a mouse embryonic stem cell model of development, knockdown and knockout of D97/D133 promote differentiation to mesoderm and endoderm fates, such as cardiomyocytes, without compromising pluripotency, consistent with the enhanced development-related gene expression programs in human cells. This work solves a decades-old mystery about orphan snoRNAs and reveals a function of snoRNAs in controlling the codon-biased dichotomous cellular states of proliferation and development.


Assuntos
Uso do Códon , RNA Nucleolar Pequeno , Humanos , Animais , Camundongos , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Uso do Códon/genética , Células HEK293 , RNA de Transferência/genética , Códon
2.
Am J Pathol ; 192(1): 130-145, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619135

RESUMO

High circulating lipids occurring in obese individuals and insulin-resistant patients are considered a contributing factor to type 2 diabetes. Exposure to high lipid concentration is proposed to both protect and damage beta-cells under different circumstances. Here, by feeding mice a high-fat diet (HFD) for 2 weeks to up to 14 months, the study showed that HFD initially causes the beta-cells to expand in population, whereas long-term exposure to HFD is associated with failure of beta-cells and the inability of animals to respond to glucose challenge. To prevent the failure of beta-cells and the development of type 2 diabetes, the molecular mechanisms that underlie this biphasic response of beta-cells to lipid exposure were explored. Using palmitic acid (PA) in cultured beta-cells and islets, the study demonstrated that chronic exposure to lipids leads to reduced viability and inhibition of cell cycle progression concurrent with down-regulation of a pro-growth/survival kinase AKT, independent of glucose. This AKT down-regulation by PA is correlated with the induction of mTOR/S6K activity. Inhibiting mTOR activity with rapamycin induced Raptor and restored AKT activity, allowing beta-cells to gain proliferation capacity that was lost after HFD exposure. In summary, a novel mechanism in which lipid exposure may cause the dipole effects on beta-cell growth was elucidated, where mTOR acts as a lipid sensor. These mechanisms can be novel targets for future therapeutic developments.


Assuntos
Regulação para Baixo , Células Secretoras de Insulina/enzimologia , Ácido Palmítico/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D2/metabolismo , Dieta Hiperlipídica , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Regulatória Associada a mTOR/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
3.
Am J Pathol ; 191(7): 1240-1254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894178

RESUMO

The estrogen-related receptor (ERR) family of orphan nuclear receptors are transcriptional activators for genes involved in mitochondrial bioenergetics and metabolism. The goal of this study was to explore the role of ERRα in lipid metabolism and the potential effect of inhibiting ERRα on the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). In the current study, three experimental mouse models: high-fat diet, high-carbohydrate diet, and a genetic model of hepatic insulin resistance where the liver hyperinsulinemia signal is mimicked via hepatic deletion of Pten (phosphatase and tensin homolog deleted on chromosome 10), the negative regulator of the insulin/phosphatidylinositol 3-kinase signaling pathway, were used. A recently developed small-molecule inhibitor for ERRα was used to demonstrate that inhibiting ERRα blocked NAFLD development induced by either high-carbohydrate diet or high-fat diet feeding. ERRα inhibition also diminished lipid accumulation and attenuated NASH development in the Pten null mice. Glycerolipid synthesis was discovered as an additional mechanism for ERRα-regulated NAFLD/NASH development and glycerophosphate acyltransferase 4 was identified as a novel transcriptional target of ERRα. In summary, these results establish ERRα as a major transcriptional regulator of lipid biosynthesis in addition to its characterized primary function as a regulator for mitochondrial function. This study recognizes ERRα as a potential target for NAFLD/NASH treatment and elucidates novel signaling pathways regulated by ERRα.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Estrogênio/metabolismo , Triglicerídeos/biossíntese , Animais , Regulação da Expressão Gênica/fisiologia , Lipogênese/fisiologia , Masculino , Camundongos , Receptor ERRalfa Relacionado ao Estrogênio
4.
Biochem J ; 477(5): 1021-1031, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32096546

RESUMO

Hepatic glucose metabolism signaling downstream of insulin can diverge to multiple pathways including AKT. Genetic studies suggest that AKT is necessary for insulin to suppress gluconeogenesis. To specifically address the role of AKT2, the dominant liver isoform of AKT in the regulation of gluconeogenesis genes, we generated hepatocytes lacking AKT2 (Akt2-/-). We found that, in the absence of insulin signal, AKT2 is required for maintaining the basal level expression of phosphoenolpyruvate carboxyl kinase (PEPCK) and to a lesser extent G6Pase, two key rate-limiting enzymes for gluconeogenesis that support glucose excursion due to pyruvate loading. We further showed that this function of AKT2 is mediated by the phosphorylation of cyclic AMP response element binding (CREB). Phosphorylation of CREB by AKT2 is needed for CREB to induce the expression of PEPCK and likely represents a priming event for unstimulated cells to poise to receive glucagon and other signals. The inhibition of gluconeogenesis by insulin is also dependent on the reduced FOXO1 transcriptional activity at the promoter of PEPCK. When insulin signal is absent, this activity appears to be inhibited by AKT2 in manner that is independent of its phosphorylation by AKT. Together, this action of AKT2 on FOXO1 and CREB to maintain basal gluconeogenesis activity may provide fine-tuning for insulin and glucocorticoid/glucagon to regulate gluconeogenesis in a timely manner to meet metabolic needs.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glucose-6-Fosfatase/biossíntese , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Proteínas Proto-Oncogênicas c-akt/deficiência , Animais , Células Cultivadas , Glucose-6-Fosfatase/genética , Hepatócitos/enzimologia , Camundongos , Camundongos Knockout , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Proteínas Proto-Oncogênicas c-akt/genética
5.
Biochemistry ; 59(34): 3169-3179, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625393

RESUMO

The amounts of the intracellular glycosylation, O-GlcNAc modification, are increased in essentially all tumors when compared to healthy tissue, and lowering O-GlcNAcylation levels results in reduced tumorigenesis and increased cancer cell death. Therefore, the pharmacological reduction of O-GlcNAc may represent a therapeutic vulnerability. The most direct approach to this goal is the inhibition of O-GlcNAc transferase (OGT), the enzyme that directly adds the modification to proteins. However, despite some recent success, this enzyme has proven difficult to inhibit. An alternative strategy involves starving OGT of its sugar substrate UDP-GlcNAc by targeting enzymes of the hexosamine biosynthetic pathway (HBP). Here, we explore the potential of the rate-determining enzyme of this pathway, glutamine fructose-6-phosphate amidotransferase (GFAT). We first show that CRISPR-mediated knockout of GFAT results in inhibition of cancer cell growth in vitro and a xenograft model that correlates with O-GlcNAcylation levels. We then demonstrate that pharmacological inhibition of GFAT sensitizes a small panel of cancer cells to undergo apoptosis in response to diamide-induced oxidative stress. Finally, we find that GFAT expression and O-GlcNAc levels are increased in a spontaneous mouse model of liver cancer. Together these experiments support the further development of inhibitors of the HBP as an indirect approach to lowering O-GlcNAcylation levels in cancer.


Assuntos
Acetilglucosamina/metabolismo , Hexosaminas/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Estresse Fisiológico , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Técnicas de Inativação de Genes , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/deficiência , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glicosilação , Camundongos
6.
Med Chem Res ; 29(4): 607-616, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34552311

RESUMO

The orphan nuclear receptors estrogen-related receptors (ERRs) bind to the estrogen-related receptor response element (ERRE) to regulate transcriptional programs in cellular metabolism and cancer cell growth. In this study, we evaluated the potential for a pyrrole-imidazole polyamide to block ERRα binding to ERREs to inhibit gene expression. We demonstrated that the ERRE-targeted polyamide 1 blocked the binding of ERRα to the consensus ERRE and reduced the transcriptional activity of ERRα in cell culture. We further showed that inhibiting ERRα transcriptional activity with polyamide 1 led to reduced mitochondrial oxygen consumption, a primary biological effect regulated by ERRα. Finally, our data demonstrated that polyamide 1 is an inhibitor for cancer cell growth.

7.
Gastroenterology ; 154(5): 1509-1523.e5, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29273451

RESUMO

BACKGROUND & AIMS: Intraductal papillary mucinous neoplasias (IPMNs) are precancerous cystic lesions that can develop into pancreatic ductal adenocarcinomas (PDACs). These large macroscopic lesions are frequently detected during medical imaging, but it is unclear how they form or progress to PDAC. We aimed to identify cells that form IPMNs and mutations that promote IPMN development and progression. METHODS: We generated mice with disruption of Pten specifically in ductal cells (Sox9CreERT2;Ptenflox/flox;R26RYFP or PtenΔDuct/ΔDuct mice) and used PtenΔDuct/+ and Pten+/+ mice as controls. We also generated KrasG12D;PtenΔDuct/ΔDuct and KrasG12D;PtenΔDuct/+ mice. Pancreata were collected when mice were 28 weeks to 14.5 months old and analyzed by histology, immunohistochemistry, and electron microscopy. We performed multiplexed droplet digital polymerase chain reaction to detect spontaneous Kras mutations in PtenΔDuct/ΔDuct mice and study the effects of Ras pathway activation on initiation and progression of IPMNs. We obtained 2 pancreatic sections from a patient with an invasive pancreatobiliary IPMN and analyzed the regions with and without the invasive IPMN (control tissue) by immunohistochemistry. RESULTS: Mice with ductal cell-specific disruption of Pten but not control mice developed sporadic, macroscopic, intraductal papillary lesions with histologic and molecular features of human IPMNs. PtenΔDuct/ΔDuct mice developed IPMNs of several subtypes. In PtenΔDuct/ΔDuct mice, 31.5% of IPMNs became invasive; invasion was associated with spontaneous mutations in Kras. KrasG12D;PtenΔDuct/ΔDuct mice all developed invasive IPMNs within 1 month. In KrasG12D;PtenΔDuct/+ mice, 70% developed IPMN, predominately of the pancreatobiliary subtype, and 63.3% developed PDAC. In all models, IPMNs and PDAC expressed the duct-specific lineage tracing marker yellow fluorescent protein. In immunohistochemical analyses, we found that the invasive human pancreatobiliary IPMN tissue had lower levels of PTEN and increased levels of phosphorylated (activated) ERK compared with healthy pancreatic tissue. CONCLUSIONS: In analyses of mice with ductal cell-specific disruption of Pten, with or without activated Kras, we found evidence for a ductal cell origin of IPMNs. We also showed that PTEN loss and activated Kras have synergistic effects in promoting development of IPMN and progression to PDAC.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Císticas, Mucinosas e Serosas/enzimologia , PTEN Fosfo-Hidrolase/deficiência , Ductos Pancreáticos/enzimologia , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem da Célula , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Invasividade Neoplásica , Neoplasias Císticas, Mucinosas e Serosas/genética , Neoplasias Císticas, Mucinosas e Serosas/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Fatores de Tempo
8.
PLoS Genet ; 10(12): e1004789, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25502566

RESUMO

Maf1 was initially identified as a transcriptional repressor of RNA pol III-transcribed genes, yet little is known about its other potential target genes or its biological function. Here, we show that Maf1 is a key downstream target of PTEN that drives both its tumor suppressor and metabolic functions. Maf1 expression is diminished with loss of PTEN in both mouse models and human cancers. Consistent with its role as a tumor suppressor, Maf1 reduces anchorage-independent growth and tumor formation in mice. PTEN-mediated changes in Maf1 expression are mediated by PTEN acting on PI3K/AKT/FoxO1 signaling, revealing a new pathway that regulates RNA pol III-dependent genes. This regulatory event is biologically relevant as diet-induced PI3K activation reduces Maf1 expression in mouse liver. We further identify lipogenic enzymes as a new class of Maf1-regulated genes whereby Maf1 occupancy at the FASN promoter opposes SREBP1c-mediated transcription activation. Consistent with these findings, Maf1 inhibits intracellular lipid accumulation and increasing Maf1 expression in mouse liver abrogates diet-mediated induction of lipogenic enzymes and triglycerides. Together, these results establish a new biological role for Maf1 as a downstream effector of PTEN/PI3K signaling and reveal that Maf1 is a key element by which this pathway co-regulates lipid metabolism and oncogenesis.


Assuntos
Carcinogênese , Metabolismo dos Lipídeos/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Células Hep G2 , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/complicações , Neoplasias/genética , Obesidade/complicações , Obesidade/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Transdução de Sinais
9.
Hepatology ; 59(3): 947-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24027047

RESUMO

UNLABELLED: Liver cancer is one of the most common solid tumors, with poor prognosis and high mortality. Mutation or deletion of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is strongly correlated with human liver cancer. Glucose-regulated protein 94 (GRP94) is a major endoplasmic reticulum (ER) chaperone protein, but its in vivo function is still emerging. To study the role of GRP94 in maintaining liver homeostasis and tumor development, we created two liver-specific knockout mouse models with the deletion of Grp94 alone, or in combination with Pten, using the albumin-cre system. We demonstrated that while deletion of GRP94 in the liver led to hyperproliferation of liver progenitor cells, deletion of both GRP94 and PTEN accelerated development of liver tumors, including both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC), suggestive of progenitor cell origin. Furthermore, at the premalignant stage we observed disturbance of cell adhesion proteins and minor liver injury. When GRP94 was deleted in PTEN-null livers, ERK was selectively activated. CONCLUSION: GRP94 is a novel regulator of cell adhesion, liver homeostasis, and tumorigenesis.


Assuntos
Carcinogênese/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Glicoproteínas de Membrana/genética , Células-Tronco Neoplásicas/fisiologia , Animais , Carcinogênese/patologia , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Humanos , Junções Intercelulares/patologia , Fígado/patologia , Fígado/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/genética
10.
Diabetologia ; 57(2): 352-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24162585

RESUMO

AIMS/HYPOTHESIS: Adult beta cells have a diminished ability to proliferate. Phosphatase and tensin homologue (PTEN) is a lipid phosphatase that antagonises the function of the mitogenic phosphatidylinositol 3-kinase (PI3K) pathway. The objective of this study was to understand the role of PTEN and PI3K signalling in the maintenance of beta cells postnatally. METHODS: We developed a Pten (lox/lox); Rosa26 (lacZ); RIP-CreER (+) model that permitted us to induce Pten deletion by treatment with tamoxifen in mature animals. We evaluated islet mass and function as well as beta cell proliferation in 3- and 12-month-old mice treated with tamoxifen (Pten deleted) vs mice treated with vehicle (Pten control). RESULTS: Deletion of Pten in juvenile (3-month-old) beta cells significantly induced their proliferation and increased islet mass. The expansion of islet mass occurred concomitantly with the enhanced ability of the Pten-deleted mice to maintain euglycaemia in response to streptozotocin treatment. In older mice (>12 months of age), deletion of Pten similarly increased islet mass and beta cell proliferation. This novel finding suggests that PTEN-regulated mechanisms may override the age-onset diminished ability of beta cells to respond to mitogenic stimulation. We also found that proteins regulating G1/S cell-cycle transition, such as cyclin D1, cyclin D2, p27 and p16, were altered when PTEN was lost, suggesting that they may play a role in PTEN/PI3K-regulated beta cell proliferation in adult tissue. CONCLUSIONS/INTERPRETATION: The signals regulated by the PTEN/PI3K pathway are important for postnatal maintenance of beta cells and regulation of their proliferation in adult tissues.


Assuntos
Envelhecimento/patologia , Diabetes Mellitus Experimental/patologia , Células Secretoras de Insulina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Ciclo Celular , Morte Celular , Proliferação de Células , Metilação de DNA , Diabetes Mellitus Experimental/metabolismo , Regulação para Baixo/genética , Deleção de Genes , Homeostase , Masculino , Camundongos , Camundongos Mutantes , PTEN Fosfo-Hidrolase/deficiência , Transdução de Sinais , Regulação para Cima
11.
J Biol Chem ; 288(35): 25007-25024, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23836899

RESUMO

Mitochondrial abnormalities are associated with cancer development, yet how oncogenic signals affect mitochondrial functions has not been fully understood. In this study, we investigate the relationship between mitochondrial alterations and PI3K/protein kinase B (AKT) signaling activation using hepatocytes and liver tissues as our experimental models. We show here that liver-specific deletion of Pten, which leads to activation of PI3K/AKT, is associated with elevated oxidative stress, increased mitochondrial mass, and augmented respiration accompanied by enhanced glycolysis. Consistent with these observations, estrogen-related receptor α (ERRα), an orphan nuclear receptor known for its role in mitochondrial biogenesis, is up-regulated in the absence of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Our pharmacological and genetic studies show that PI3K/AKT activity regulates the expression of ERRα and mitochondrial biogenesis/respiration. Furthermore, cAMP-response element-binding protein, as a downstream target of AKT, plays a role in the regulation of ERRα, independent of PKA signaling. ERRα regulates reactive oxygen species production, and ERRα knockdown attenuates proliferation and colony-forming potential in Pten-null hepatocytes. Finally, analysis of clinical datasets from liver tissues showed a negative correlation between expressions of ERRα and PTEN in patients with liver cancer. Therefore, this study has established a previously unrecognized link between a growth signal and mitochondrial metabolism.


Assuntos
Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Ativação Enzimática/genética , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/genética , Transdução de Sinais/genética , Receptor ERRalfa Relacionado ao Estrogênio
12.
Arterioscler Thromb Vasc Biol ; 32(2): 236-46, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22155452

RESUMO

OBJECTIVE: States of insulin resistance, hyperinsulinemia, and hepatic steatosis are associated with increased secretion of triglycerides (TG) and apolipoprotein B (apoB), even though insulin targets apoB for degradation. We used hepatic-specific "phosphatase and tensin homologue deleted on chromosome 10" (Pten) knockout (hPten-ko) mice, with increased hepatic insulin signaling, to determine the relative roles of insulin signaling and hepatic TG in regulating apoB secretion. METHODS AND RESULTS: TG and apoB secretion was elevated in hPten-ko mice. When hepatic TG was reduced by inhibition of diacylglycerol acyltransferase 1/diacylglycerol acyltransferase 2 or sterol regulatory element-binding protein-1c, both TG secretion and apoB secretion fell without changes in hepatic insulin signaling. Acute reconstitution of hPten reduced hepatic TG content, and both TG and apoB secretion fell within 4 days despite decreased hepatic insulin signaling. Acute depletion of hepatic Pten by adenoviral introduction of Cre into Pten floxed mice caused steatosis within 4 days, and secretion of both TG and apoB increased despite increased hepatic insulin signaling. Even when steatosis after acute Pten depletion was prevented by pretreatment with SREBP-1c antisense oligonucleotides, apoB secretion was not reduced after 4 days. Ex vivo results were in primary hepatocytes were similar. CONCLUSIONS: Either hepatic TG is the dominant regulator of apoB secretion or any inhibitory effects of hepatic insulin signaling on apoB secretion is very short-lived.


Assuntos
Apolipoproteínas B/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Transdução de Sinais/fisiologia , Triglicerídeos/metabolismo , Animais , Diacilglicerol O-Aciltransferase/deficiência , Diacilglicerol O-Aciltransferase/genética , Fígado Gorduroso/metabolismo , Lipogênese/fisiologia , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética
13.
Cancer Cell ; 8(3): 185-95, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16169464

RESUMO

To determine the role of the phosphatidylinositol 3-kinase (PI3-K) pathway in pancreas development, we generated a pancreas-specific knockout of Pten, a negative regulator of PI3-K signaling. Knockout mice display progressive replacement of the acinar pancreas with highly proliferative ductal structures that contain abundant mucins and express Pdx1 and Hes1, two markers of pancreatic progenitor cells. Moreover, a fraction of these mice develop ductal malignancy. We provide evidence that ductal metaplasia results from the expansion of centroacinar cells rather than transdifferentiation of acinar cells. These results indicate that Pten actively maintains the balance between different cell types in the adult pancreas and that misregulation of the PI3-K pathway in centroacinar cells may contribute to the initiation of pancreatic carcinoma in vivo.


Assuntos
Neoplasias Pancreáticas/patologia , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Transformação Celular Neoplásica , Metaplasia/patologia , Camundongos , PTEN Fosfo-Hidrolase , Pâncreas/patologia , Pâncreas/fisiopatologia , Pâncreas/ultraestrutura , Neoplasias Pancreáticas/prevenção & controle
14.
Front Physiol ; 14: 1098467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818443

RESUMO

Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.

15.
Chem Sci ; 13(7): 1982-1991, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35308855

RESUMO

Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymatic attachments of target proteins with ADP-ribose units donated by nicotinamide adenine dinucleotide (NAD+). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment. Despite these successes, our understanding about PARP1 remains limited, partially due to the presence of various ADP-ribosylation reactions catalyzed by other PARPs and their overlapped cellular functions. Here we report a synthetic NAD+ featuring an adenosyl 3'-azido substitution. Acting as an ADP-ribose donor with high activity and specificity for human PARP1, this compound enables labelling and profiling of possible protein substrates of endogenous PARP1. It provides a unique and valuable tool for studying PARP1 in biology and pathology and may shed light on the development of PARP isoform-specific modulators.

16.
Front Oncol ; 12: 958696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276076

RESUMO

Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.

17.
Gastroenterology ; 139(6): 2170-82, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20837017

RESUMO

BACKGROUND & AIMS: The tumor suppressor PTEN inhibits AKT2 signaling; both are aberrantly expressed in liver tumors. We investigated how PTEN and AKT2 regulate liver carcinogenesis. Loss of PTEN leads to spontaneous development of liver tumors from progenitor cells. We investigated how the loss of PTEN activates liver progenitor cells and induces tumorigenesis. METHODS: We studied mice with liver-specific disruptions in Pten and the combination of Pten and Akt2 to investigate mechanisms of liver carcinogenesis. RESULTS: PTEN loss leads to hepatic injury and establishes selective pressure for tumor-initiating cells (TICs), which proliferate to form mixed-lineage tumors. The Pten-null mice had increasing levels of hepatic injury before proliferation of hepatic progenitors. Attenuation of hepatic injury by deletion of Akt2 reduced progenitor cell proliferation and delayed tumor development. In Pten/Akt2-null mice given 3,5-diethoxycarbonyl-1,4 dihydrocollidine (DDC), we found that the primary effect of AKT2 loss was attenuation of hepatic injury and not inhibition of progenitor-cell proliferation in response to injury. CONCLUSIONS: Liver carcinogenesis in Pten-null mice requires not only the transformation of TICs but selection pressure from hepatic injury and cell death, which activates TICs. Further research is required to elucidate the mechanism for hepatic injury and its relationship with TIC activation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neoplasias Hepáticas , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Piridinas/toxicidade , Transdução de Sinais/fisiologia , Células-Tronco/patologia
18.
Am J Pathol ; 176(5): 2302-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348245

RESUMO

Insulin signaling in the liver leads to accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Deletion of the phosphatase Pten (phosphatase and tensin homologue deleted on chromosome 10) reduces PIP3 levels and leads to fatty liver development. The purpose of this study was to investigate the mechanisms underlying lipogenesis that result from PIP3 accumulation using liver Pten-deletion mice. To explore the role of AKT2, the major liver AKT isoform in steatosis induced by deletion of Pten, we created mice lacking both Pten and Akt2 in hepatocytes and compared the effect of deleting Akt2 and Pten in the double mutants to the Pten deletion mice alone. Hepatic lipid accumulation was significantly reduced in mice lacking both PTEN and AKT2, as compared with Pten mutant mice alone. This effect was due to the role of AKT2 in maintaining expression of genes involved in de novo lipogenesis. We showed that lipid accumulation in the double mutant hepatocytes was partially reversed by expression of constitutive active FOXO1, a transcription factor downstream of AKT not dependent on inhibition of atypical protein kinase C. In summary, this study delineated regulation of lipid metabolism by PI3K signaling pathway by showing that AKT mediates PIP3 accumulation (mimicked by PTEN loss) induced lipid deposition in the liver and provided an important molecular mechanism for insulin-regulated hepatic lipogenesis.


Assuntos
Fígado Gorduroso/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Deleção de Genes , Humanos , Insulina/metabolismo , Lipídeos/química , Masculino , Camundongos , Fosfatos de Fosfatidilinositol/química , Isoformas de Proteínas , Transdução de Sinais
19.
Hepatology ; 52(3): 945-53, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20564331

RESUMO

UNLABELLED: Epithelial-to-mesenchymal transition (EMT) is predicted to play a critical role in metastatic disease in hepatocellular carcinoma. In this study, we used a novel murine model of EMT to elucidate a mechanism of tumor progression and metastasis. A total of 2 x 10(6) liver cells isolated from Pten(loxp/loxp)/Alb-Cre(+) mice, expanded from a single CD133(+)CD45(-) cell clone, passage 0 (P0), were sequentially transplanted to obtain two passages of tumor cells, P1 and P2. Cells were analyzed for gene expression using microarray and real-time polymerase chain reaction. Functional analysis included cell proliferation, migration, and invasion in vitro and orthotopic tumor metastasis assays in vivo. Although P0, P1, and P2 each formed tumors consistent with mixed liver epithelium, within the P2 cells, two distinct cell types were clearly visible: cells with epithelial morphology similar to P0 cells and cells with fibroblastoid morphology. These P2 mesenchymal cells demonstrated increased locomotion on wound healing; increased cell invasion on Matrigel basement membrane; increased EMT-associated gene expression of Snail1, Zeb1, and Zeb2; and down-regulated E-cadherin. P2 mesenchymal cells demonstrated significantly faster tumor growth in vivo compared with P2 epithelial counterparts, with invasion of intestine, pancreas, spleen, and lymph nodes. Furthermore, P2 mesenchymal cells secreted high levels of hepatocyte growth factor (HGF), which we propose acts in a paracrine fashion to drive epithelial cells to undergo EMT. In addition, a second murine liver cancer stem cell line with methionine adenosyltransferase 1a deficiency acquired EMT after sequential transplantations, indicating that EMT was not restricted to Pten-deleted tumors. CONCLUSION: EMT is associated with a high rate of liver tumor proliferation, invasion, and metastasis in vivo, which is driven by HGF secreted from mesenchymal tumor cells in a feed-forward mechanism.


Assuntos
Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Neoplasias Hepáticas/patologia , Mesoderma/patologia , Antígeno AC133 , Animais , Antígenos CD/metabolismo , Carcinoma Hepatocelular/metabolismo , Movimento Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Hepáticas/metabolismo , Mesoderma/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Camundongos , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Peptídeos/metabolismo , Transdução de Sinais/fisiologia
20.
Hepatology ; 52(6): 2096-108, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20890892

RESUMO

UNLABELLED: Prohibitin 1 (PHB1) is a highly conserved, ubiquitously expressed protein that participates in diverse processes including mitochondrial chaperone, growth and apoptosis. The role of PHB1 in vivo is unclear and whether it is a tumor suppressor is controversial. Mice lacking methionine adenosyltransferase 1A (MAT1A) have reduced PHB1 expression, impaired mitochondrial function, and spontaneously develop hepatocellular carcinoma (HCC). To see if reduced PHB1 expression contributes to the Mat1a knockout (KO) phenotype, we generated liver-specific Phb1 KO mice. Expression was determined at the messenger RNA and protein levels. PHB1 expression in cells was varied by small interfering RNA or overexpression. At 3 weeks, KO mice exhibit biochemical and histologic liver injury. Immunohistochemistry revealed apoptosis, proliferation, oxidative stress, fibrosis, bile duct epithelial metaplasia, hepatocyte dysplasia, and increased staining for stem cell and preneoplastic markers. Mitochondria are swollen and many have no discernible cristae. Differential gene expression revealed that genes associated with proliferation, malignant transformation, and liver fibrosis are highly up-regulated. From 20 weeks on, KO mice have multiple liver nodules and from 35 to 46 weeks, 38% have multifocal HCC. PHB1 protein levels were higher in normal human hepatocytes compared to human HCC cell lines Huh-7 and HepG2. Knockdown of PHB1 in murine nontransformed AML12 cells (normal mouse hepatocyte cell line) raised cyclin D1 expression, increased E2F transcription factor binding to cyclin D1 promoter, and proliferation. The opposite occurred with PHB1 overexpression. Knockdown or overexpression of PHB1 in Huh-7 cells did not affect proliferation significantly or sensitize cells to sorafenib-induced apoptosis. CONCLUSION: Hepatocyte-specific PHB1 deficiency results in marked liver injury, oxidative stress, and fibrosis with development of HCC by 8 months. These results support PHB1 as a tumor suppressor in hepatocytes.


Assuntos
Carcinoma Hepatocelular/patologia , Cirrose Hepática/etiologia , Neoplasias Hepáticas/patologia , Proteínas Repressoras/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Knockout , Proibitinas , Proteínas Repressoras/deficiência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa