Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Glob Chang Biol ; 27(23): 6103-6116, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601792

RESUMO

Snow insulates the soil from air temperature, decreasing winter cold stress and altering energy use for organisms that overwinter in the soil. As climate change alters snowpack and air temperatures, it is critical to account for the role of snow in modulating vulnerability to winter climate change. Along elevational gradients in snowy mountains, snow cover increases but air temperature decreases, and it is unknown how these opposing gradients impact performance and fitness of organisms overwintering in the soil. We developed experimentally validated ecophysiological models of cold and energy stress over the past decade for the montane leaf beetle Chrysomela aeneicollis, along five replicated elevational transects in the Sierra Nevada mountains in California. Cold stress peaks at mid-elevations, while high elevations are buffered by persistent snow cover, even in dry years. While protective against cold, snow increases energy stress for overwintering beetles, particularly at low elevations, potentially leading to mortality or energetic tradeoffs. Declining snowpack will predominantly impact mid-elevation populations by increasing cold exposure, while high elevation habitats may provide refugia as drier winters become more common.


Assuntos
Ecossistema , Neve , Mudança Climática , Refúgio de Vida Selvagem , Estações do Ano , Temperatura
2.
J Therm Biol ; 101: 103096, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34879914

RESUMO

Global warming is challenging wild species in land and water. In the intertidal zone, species are already living at their thermal limits, being vulnerable even to small increases in maximum habitat temperatures. Knowledge of the mechanisms by which many intertidal zone species cope with elevated temperatures is limited. We analysed the molecular thermal stress response of the limpet Patella vulgata under slight and frequent (one-day), and extreme and rare (three-day) warming events. Using RNA-seq to assess differential gene expression among treatments, differing molecular responses were obtained in the two treatments, with more changes in gene expression after the three-day event; with one-third of the differentially expressed transcripts being down-regulated. However, across treatments we observed shifts in gene expression for common aspects of the heat stress response including intra-cellular communication, protein chaperoning, proteolysis and cell cycle arrest. Of the 71,675 transcripts obtained, only 259 were differentially expressed after both heating events. From these, 218 defined the core group (i.e. genes induced by thermal stress with similar expression patterns irrespective of the magnitude of the warming event). The core group was composed of already well-studied genes in heat stress responses in intertidal organisms (e.g. heat shock proteins), but also genes from less explored metabolic pathways, e.g. the ubiquitin system, which were also fundamental regardless of the magnitude of the imposed warming. Moreover, we have also identified 41 signaling genes (i.e. a set of genes responding to both events and with expression patterns specific to the intensity of thermal stress), principally including genes involved in the maintenance of extracellular structure that have previously not been identified as part of the response to thermal stress in intertidal zone organisms. These signaling genes will be useful heat stress molecular biomarkers for monitoring heat stress in natural populations.


Assuntos
Gastrópodes/genética , Resposta ao Choque Térmico/genética , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , RNA Mensageiro , Temperatura , Transcriptoma
3.
Physiology (Bethesda) ; 34(2): 86-100, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30724132

RESUMO

A consequence of climate change is the increased frequency and severity of extreme heat waves. This is occurring now as most of the warmest summers and most intense heat waves ever recorded have been during the past decade. In this review, I describe the ways in which animals and human populations are likely to respond to increased extreme heat, suggest how to study those responses, and reflect on the importance of those studies for countering the devastating impacts of climate change.


Assuntos
Adaptação Fisiológica , Ecossistema , Aquecimento Global , Raios Infravermelhos , Animais , Temperatura Alta , Humanos , Seleção Genética
4.
Oecologia ; 192(3): 647-656, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989318

RESUMO

Organisms with annual life cycles are exposed to life stage specific thermal environments across seasons. Seasonal variation in thermal environments can vary across years and among sites. We investigated how organisms with annual life cycles respond to predictable seasonal changes in temperature and unpredictable thermal variation between habitats and years throughout their lives. Field surveys and historical records reveal that the spatially and temporally heterogeneous thermal environments inhabited by the annual mayfly Ephemerella maculata (Ephemerellidae) shift the date for transition to the next, life stage, so that the thermal phenotype of each life stage matches the thermal environment of the specific habitat and year. Laboratory studies of three distinct life stages of this mayfly reveal that life stage transitions are temperature dependent, facilitating timing shifts that are synchronized with the current season's temperatures. Each life stage exhibited specific thermal sensitivity and performance phenotypes that matched the ambient temperature typically experienced during that life stage. Our study across the whole life cycle reveals mechanisms that allow organisms to achieve lifetime eurythermy in a dynamic seasonal environment, despite having narrower thermal ranges for growth and development in each life stage.


Assuntos
Ephemeroptera , Animais , Insetos , Estágios do Ciclo de Vida , Estações do Ano , Temperatura
5.
J Exp Biol ; 221(Pt 18)2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30065035

RESUMO

Giant clams (genus Tridacna) are the largest living bivalves and, like reef-building corals, host symbiotic dinoflagellate algae (Symbiodinium) that significantly contribute to their energy budget. In turn, Symbiodinium rely on the host to supply inorganic carbon (Ci) for photosynthesis. In corals, host 'proton pump' vacuolar-type H+-ATPase (VHA) is part of a carbon-concentrating mechanism (CCM) that promotes Symbiodinium photosynthesis. Here, we report that VHA in the small giant clam (Tridacna maxima) similarly promotes Symbiodinium photosynthesis. VHA was abundantly expressed in the apical membrane of epithelial cells of T. maxima's siphonal mantle tubule system, which harbors Symbiodinium Furthermore, application of the highly specific pharmacological VHA inhibitors bafilomycin A1 and concanamycin A significantly reduced photosynthetic O2 production by ∼40%. Together with our observation that exposure to light increased holobiont aerobic metabolism ∼5-fold, and earlier estimates that translocated fixed carbon exceeds metabolic demand, we conclude that VHA activity in the siphonal mantle confers strong energetic benefits to the host clam through increased supply of Ci to algal symbionts and subsequent photosynthetic activity. The convergent role of VHA in promoting Symbiodinium photosynthesis in the giant clam siphonal mantle tubule system and coral symbiosome suggests that VHA-driven CCM is a common exaptation in marine photosymbioses that deserves further investigation in other taxa.


Assuntos
Proteínas de Algas/metabolismo , Cardiidae/fisiologia , Dinoflagellida/metabolismo , Fotossíntese , Proteínas de Protozoários/metabolismo , Simbiose/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Metabolismo Energético
6.
J Exp Biol ; 221(Pt 24)2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305375

RESUMO

Spatial heterogeneity in environmental characteristics can drive adaptive differentiation when contrasting environments exert divergent selection pressures. This environmental and genetic heterogeneity can substantially influence population and community resilience to disturbance events. Here, we investigated corals from the highly variable back-reef habitats of Ofu Island in American Samoa that thrive in thermal conditions known to elicit widespread bleaching and mortality elsewhere. To investigate the relative importance of acclimation versus site of origin in shaping previously observed differences in coral tolerance limits at Ofu Island, specimens of the common Indo-Pacific coral Porites lobata from locations with differing levels of thermal variability were acclimated to low and high thermal variation in controlled common garden aquaria. Overall, there were minimal effects of the acclimation exposure. Corals native to the site with the highest level of daily variability grew fastest, regardless of acclimation treatment. When exposed to lethal thermal stress, corals native to both variable sites contained elevated levels of heat shock proteins and maintained photosynthetic performance for 1-2 days longer than corals from the stable environment. Despite being separated by <5 km, there was significant genetic differentiation among coral colonies (FST=0.206, P<0.0001; nuclear ribosomal DNA), whereas Symbiodiniaceae were all Cladocopium sp. (ITS type C15). Our study demonstrates consistent signatures of adaptation in growth and stress resistance in corals from naturally thermally variable habitats, suggesting that differences in the amount of thermal variability may be an important contributor to adaptive differentiation in reef-building corals.


Assuntos
Antozoários/fisiologia , Temperatura Alta , Termotolerância , Aclimatação , Samoa Americana , Animais , Dinoflagellida/genética , Dinoflagellida/fisiologia , Fatores de Tempo
7.
Biol Lett ; 14(6)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899125

RESUMO

The giant clam Tridacna crocea, native to Indo-Pacific coral reefs, is noted for its unique ability to bore fully into coral rock and is a major agent of reef bioerosion. However, T. crocea's mechanism of boring has remained a mystery despite decades of research. By exploiting a new, two-dimensional pH-sensing technology and manipulating clams to press their presumptive boring tissue (the pedal mantle) against pH-sensing foils, we show that this tissue lowers the pH of surfaces it contacts by greater than or equal to 2 pH units below seawater pH day and night. Acid secretion is likely mediated by vacuolar-type H+-ATPase, which we demonstrate (by immunofluorescence) is abundant in the pedal mantle outer epithelium. Our discovery of acid secretion solves this decades-old mystery and reveals that, during bioerosion, T. crocea can liberate reef constituents directly to the soluble phase, rather than producing sediment alone as earlier assumed.


Assuntos
Bivalves/metabolismo , Epitélio/química , Ácidos/metabolismo , Animais , Bivalves/química , Recifes de Corais , Concentração de Íons de Hidrogênio , ATPases Translocadoras de Prótons/análise
8.
Proc Biol Sci ; 282(1808): 20150401, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25994676

RESUMO

Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.


Assuntos
Aclimatação , Evolução Biológica , Mudança Climática , Crustáceos/fisiologia , Insetos/fisiologia , Vertebrados/fisiologia , Animais , Regulação da Temperatura Corporal , Temperatura Baixa , Aquecimento Global , Temperatura Alta
9.
J Exp Biol ; 218(Pt 12): 1946-55, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26085671

RESUMO

The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the external environment, such as epithelial tissues, may be susceptible to changes in external pH. Such biochemical systems could be adapted to a reduced pH environment by adjustment of weak bonds in an analogous fashion to biochemical adaptation to temperature. Whether such biochemical adaptation to OA exists remains to be discovered.


Assuntos
Adaptação Biológica , Evolução Biológica , Água do Mar/química , Aclimatação , Animais , Dióxido de Carbono/química , Mudança Climática , Variação Genética , Concentração de Íons de Hidrogênio , Oceanos e Mares
10.
J Exp Biol ; 218(Pt 3): 388-403, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25653421

RESUMO

The porcelain crab Petrolisthes cinctipes lives under rocks and in mussel beds in the mid-intertidal zone where it experiences immersion during high tide and saturating humid conditions in air during low tide, which can increase habitat temperature by up to 20°C. To identify the biochemical changes affected by increasing temperature fluctuations and subsequent heat shock, we acclimated P. cinctipes for 30 days to one of three temperature regimes: (1) constant 10°C, (2) daily temperature fluctuations between 10 and 20°C (5 h up-ramp to 20°C, 1 h down-ramp to 10°C) and (3) 10-30°C (up-ramp to 30°C). After acclimation, animals were exposed to either 10°C or a 30°C heat shock to analyze the proteomic changes in claw muscle tissue. Following acclimation to 10-30°C (measured at 10°C), enolase and ATP synthase increased in abundance. Following heat shock, isoforms of arginine kinase and glycolytic enzymes such as aldolase, triose phosphate isomerase and glyceraldehyde 3-phosphate dehydrogenase increased across all acclimation regimes. Full-length isoforms of hemocyanin increased abundance following acclimation to 10-30°C, but hemocyanin fragments increased after heat shock following constant 10°C and fluctuating 10-20°C, possibly playing a role as antimicrobial peptides. Following constant 10°C and fluctuating 10-20°C, paramyosin and myosin heavy chain type-B increased in abundance, respectively, whereas myosin light and heavy chain decreased with heat shock. Actin-binding proteins, which stabilize actin filaments (filamin and tropomyosin), increased during heat shock following 10-30°C; however, actin severing and depolymerization proteins (gelsolin and cofilin) increased during heat shock following 10-20°C, possibly promoting muscle fiber restructuring. RAF kinase inhibitor protein and prostaglandin reductase increased during heat shock following constant 10°C and fluctuating 10-20°C, possibly inhibiting an immune response during heat shock. The results suggest that ATP supply, muscle fiber restructuring and immune responses are all affected by temperature fluctuations and subsequent acute heat shock in muscle tissue. Furthermore, although heat shock after acclimation to constant 10°C and fluctuating 10-30°C showed the greatest effects on the proteome, moderately fluctuating temperatures (10-20°C) broadened the temperature range over which claw muscle was able to respond to an acute heat shock with limited changes in the muscle proteome.


Assuntos
Anomuros/fisiologia , Proteínas de Artrópodes/metabolismo , Proteoma/metabolismo , Aclimatação , Animais , Anomuros/imunologia , Anomuros/metabolismo , Ritmo Circadiano , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Hemocianinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miofibrilas/metabolismo , Temperatura
11.
J Exp Biol ; 217(Pt 22): 3974-80, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392458

RESUMO

We show here that increased variability of temperature and pH synergistically negatively affects the energetics of intertidal zone crabs. Under future climate scenarios, coastal ecosystems are projected to have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH, the individual or interactive effects of which have yet to be determined. To characterize energetic consequences of exposure to increased variability of pH and temperature, we exposed porcelain crabs, Petrolisthes cinctipes, to conditions that simulated current and future intertidal zone thermal and pH environments. During the daily low tide, specimens were exposed to no, moderate or extreme heating, and during the daily high tide experienced no, moderate or extreme acidification. Respiration rate and cardiac thermal limits were assessed following 2.5 weeks of acclimation. Thermal variation had a larger overall effect than pH variation, though there was an interactive effect between the two environmental drivers. Under the most extreme temperature and pH combination, respiration rate decreased while heat tolerance increased, indicating a smaller overall aerobic energy budget (i.e. a reduced O2 consumption rate) of which a larger portion is devoted to basal maintenance (i.e. greater thermal tolerance indicating induction of the cellular stress response). These results suggest the potential for negative long-term ecological consequences for intertidal ectotherms exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.


Assuntos
Anomuros/fisiologia , Mudança Climática , Temperatura Alta/efeitos adversos , Concentração de Íons de Hidrogênio , Água do Mar/química , Aclimatação , Animais , Estresse Fisiológico , Ondas de Maré
12.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38079165

RESUMO

Crabs are a large subtaxon of the Arthropoda, the most diverse and species-rich metazoan group. Several outstanding questions remain regarding crab diversification, including about the genomic capacitors of physiological and morphological adaptation, that cannot be answered with available genomic resources. Physiologically and ecologically diverse Anomuran porcelain crabs offer a valuable model for investigating these questions and hence genomic resources of these crabs would be particularly useful. Here, we present the first two genome assemblies of congeneric and sympatric Anomuran porcelain crabs, Petrolisthes cinctipes and Petrolisthes manimaculis from different microhabitats. Pacific Biosciences high-fidelity sequencing led to genome assemblies of 1.5 and 0.9 Gb, with N50s of 706.7 and 218.9 Kb, respectively. Their assembly length difference can largely be attributed to the different levels of interspersed repeats in their assemblies: The larger genome of P. cinctipes has more repeats (1.12 Gb) than the smaller genome of P. manimaculis (0.54 Gb). For obtaining high-quality annotations of 44,543 and 40,315 protein-coding genes in P. cinctipes and P. manimaculis, respectively, we used RNA-seq as part of a larger annotation pipeline. Contrarily to the large-scale differences in repeat content, divergence levels between the two species as estimated from orthologous protein-coding genes are moderate. These two high-quality genome assemblies allow future studies to examine the role of environmental regulation of gene expression in the two focal species to better understand physiological response to climate change, and provide the foundation for studies in fine-scale genome evolution and diversification of crabs.


Assuntos
Anomuros , Animais , Anomuros/genética , Porcelana Dentária
13.
Ecol Evol ; 14(5): e11371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711490

RESUMO

Organisms within freshwater and marine environments are subject to a diverse range of often co-occurring abiotic and biotic stressors. Despite growing awareness of the complex multistress systems at play in aquatic ecosystems, many questions remain regarding how simultaneous stressors interact with one another and jointly impact aquatic species. We looked at multistress interactions in a protected stream ecosystem in Mendocino County, California. Specifically, we examined how diurnal temperature variation, turbidity, and predator cues altered the movement speed of larval Pacific giant salamanders (Dicamptodon tenebrosus). In a second experiment, we looked at how simulated low-flow summer conditions impact the expression of heat-shock proteins (HSPs) in the same species. Larvae moved almost one and a half times faster in the presence of chemical cues from trout and suspended sediment, and almost two times faster when both sediment and trout cues were present but were only marginally affected by temperature and visual cues from conspecifics. Interestingly, the order of stressor exposure also appeared to influence larval speed, where exposure to sediment and trout in earlier trials tended to lead to faster speeds in later trials. Additionally, larvae exposed to low-flow conditions had more variable, but not statistically significantly higher, expression of HSPs. Our findings highlight the potential interactive effects of an abiotic stressor, sedimentation, and a biotic stressor, and predator chemical cues on an ecologically important trait: movement speed. Our findings also demonstrate the likely role of HSPs in larval salamander survival in challenging summer conditions. Taken together, these findings show that larval D. tenebrosus responds behaviorally to biotic and abiotic stressors and suggests a possible pathway for physiological tolerance of environmental stress. Consideration of multistress systems and their effects is important for understanding the full effects of co-occurring stressors on aquatic organisms to guide appropriate conservation and management efforts based on ecologically relevant responses of organisms within an environment.

14.
J Exp Biol ; 216(Pt 8): 1405-11, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23536588

RESUMO

Intertidal zone organisms naturally experience daily fluctuations in pH, presently reaching values beyond what is predicted for open ocean surface waters from ocean acidification (OA) by the year 2100, and thus present an opportunity to study the pH sensitivity of organisms that are presumably adapted to an acidified environment. The intertidal zone porcelain crab, Petrolisthes cinctipes, was used to study physiological responses to low pH in embryonic, larval and newly recruited juvenile life-history stages. In these crabs, embryonic development occurs in the pH-variable intertidal zone (pH 6.9-9.5), larvae mature in the more stable pelagic environment (pH 7.9-8.2), and juvenile crabs settle back into the pH-variable intertidal zone. We examined survival, cardiac performance, energetics and morphology in embryonic, larval and juvenile crabs exposed to two pH conditions (pH 7.9 and 7.6). Embryos and larvae were split by brood between the pH treatments for 9 days to examine brood-specific responses to low pH. Hatching success did not differ between pH conditions, but ranged from 30% to 95% among broods. Larval survival was not affected by acidification, but juvenile survival was reduced by ~30% after longer (40 days) exposure to low pH. Embryonic and larval heart rates were 37% and 20% lower at low pH, and there was a brood-specific response in embryos. Embryos did not increase in volume under acidified conditions, compared with a 15% increase in ambient conditions. We conclude that sustained exposure to low pH could be detrimental to P. cinctipes embryos and larvae despite the fact that embryos are regularly exposed to naturally fluctuating hypercapnic water in the intertidal zone. Importantly, our results indicate that early life-history stage responses to OA may be brood specific through as yet undetermined mechanisms.


Assuntos
Ácidos/análise , Crustáceos/fisiologia , Água do Mar/química , Ácidos/metabolismo , Animais , Crustáceos/anatomia & histologia , Crustáceos/embriologia , Feminino , Coração/fisiologia , Frequência Cardíaca , Concentração de Íons de Hidrogênio , Larva/anatomia & histologia , Larva/fisiologia , Estágios do Ciclo de Vida , Oceanos e Mares
15.
J Exp Biol ; 216(Pt 8): 1412-22, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23536589

RESUMO

Absorption of elevated atmospheric CO2 is causing surface ocean pH to decline, a process known as ocean acidification (OA). To date, few studies have assessed the physiological impacts of OA on early life-history stages of intertidal organisms, which transition from habitats with fluctuating pH (intertidal zone) to relatively stable (pelagic zone) pH environments. We used the intertidal crab Petrolisthes cinctipes to determine whether metabolic responses to year 2300 predictions for OA vary among early developmental stages and to examine whether the effects were more pronounced in larval stages developing in the open ocean. Oxygen consumption rate, total protein, dry mass, total lipids and C/N were determined in late-stage embryos, zoea I larvae and newly settled juveniles reared in ambient pH (7.93 ± 0.06) or low pH (7.58 ± 0.06). After short-term exposure to low pH, embryos displayed 11% and 6% lower metabolism and dry mass, respectively, which may have an associated bioenergetic cost of delayed development to hatching. However, metabolic responses appeared to vary among broods, suggesting significant parental effects among the offspring of six females, possibly a consequence of maternal state during egg deposition and genetic differences among broods. Larval and juvenile metabolism were not affected by acute exposure to elevated CO2. Larvae contained 7% less nitrogen and C/N was 6% higher in individuals reared at pH 7.58 for 6 days, representing a possible switch from lipid to protein metabolism under low pH; the metabolic switch appears to fully cover the energetic cost of responding to elevated CO2. Juvenile dry mass was unaffected after 33 days exposure to low pH seawater. Increased tolerance to low pH in zoea I larvae and juvenile stages may be a consequence of enhanced acid-base regulatory mechanisms, allowing greater compensation of extracellular pH changes and thus preventing decreases in metabolism after exposure to elevated PCO2. The observed variation in responses of P. cinctipes to decreased pH in the present study suggests the potential for this species to adapt to future declines in near-shore pH.


Assuntos
Ácidos/análise , Crustáceos/embriologia , Crustáceos/metabolismo , Água do Mar/química , Ácidos/metabolismo , Animais , Proteínas de Artrópodes/análise , Proteínas de Artrópodes/metabolismo , Metabolismo Basal , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Crustáceos/química , Feminino , Concentração de Íons de Hidrogênio , Larva/química , Larva/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Oceanos e Mares
16.
G3 (Bethesda) ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37178174

RESUMO

The leaf beetle Chrysomela aeneicollis has a broad geographic range across Western North America but is restricted to cool habitats at high elevations along the west coast. Central California populations occur only at high altitudes (2,700-3,500 m) where they are limited by reduced oxygen supply and recent drought conditions that are associated with climate change. Here, we report a chromosome-scale genome assembly alongside a complete mitochondrial genome and characterize differences among mitochondrial genomes along a latitudinal gradient over which beetles show substantial population structure and adaptation to fluctuating temperatures. Our scaffolded genome assembly consists of 21 linkage groups; one of which we identified as the X chromosome based on female/male whole genome sequencing coverage and orthology with Tribolium castaneum. We identified repetitive sequences in the genome and found them to be broadly distributed across all linkage groups. Using a reference transcriptome, we annotated a total of 12,586 protein-coding genes. We also describe differences in putative secondary structures of mitochondrial RNA molecules, which may generate functional differences important in adaptation to harsh abiotic conditions. We document substitutions at mitochondrial tRNA molecules and substitutions and insertions in the 16S rRNA region that could affect intermolecular interactions with products from the nuclear genome. This first chromosome-level reference genome will enable genomic research in this important model organism for understanding the biological impacts of climate change on montane insects.


Assuntos
Besouros , Genoma Mitocondrial , Salix , Feminino , Masculino , Animais , Besouros/genética , DNA Mitocondrial/genética , Salix/genética , RNA Ribossômico 16S , Cromossomos
17.
Artigo em Inglês | MEDLINE | ID: mdl-37210884

RESUMO

During winter, many organisms conserve resources by entering dormancy, suppressing metabolism and biosynthesis. The transition out of winter dormancy to summer activity requires a quick reversal of this suppression, in order to exploit now-favorable environmental conditions. To date, mechanisms by which winter climate variation affects this transition remains unelucidated. Here we experimentally manipulated snow cover for naturally overwintering montane leaf beetles (Chrysomela aeneicollis), and profiled changes in gene expression during the transition out of dormancy in spring. Upon emergence, beetles up-regulate transcripts associated with digestion and nutrient acquisition and down regulate those associated with lipid metabolism, suggesting a shift away from utilizing stored lipid and towards digestion of carbohydrate-rich host plant tissue. Development of digestive capacity is followed by up-regulation of transcripts associated with reproduction; a transition that occurs earlier in females than males. Snow manipulation strongly affected the ground thermal regime and correspondingly gene expression profiles, with beetles showing a delayed up-regulation of reproduction in the dry compared to snowy plots. This suggests that winter conditions can alter the timing and prioritization of processes during emergence from dormancy, potentially magnifying the effects of declining snow cover in the Sierra's and other snowy mountains.


Assuntos
Besouros , Transcriptoma , Feminino , Masculino , Animais , Besouros/genética , Reprodução , Estações do Ano , Digestão
18.
J Exp Biol ; 215(Pt 11): 1824-36, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22573761

RESUMO

Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.


Assuntos
Aclimatação/genética , Aclimatação/fisiologia , Anomuros/genética , Anomuros/fisiologia , Animais , Sequência de Bases , Clima Frio , Primers do DNA/genética , Ácidos Graxos/metabolismo , Feminino , Masculino , Lipídeos de Membrana/metabolismo , Análise em Microsséries , Miocárdio/metabolismo , Fosfolipídeos/metabolismo , Fatores de Tempo , Transcriptoma
19.
Physiol Biochem Zool ; 95(3): 251-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443148

RESUMO

AbstractUnderstanding the physiology of invasive species will contribute to better prediction and prevention measures to avoid the economic and environmental consequences of biological invasions. Predicting the future range of Potamopyrgus antipodarum, a globally invasive aquatic snail, relies on a comprehensive understanding of its physiological tolerances to individual and combined environmental stressors. We conducted a laboratory study to investigate the interacting effects of temperature and dissolved oxygen in shaping the abiotic niche of P. antipodarum. We generated thermal performance curves (7°C-35°C) for resting respiration rate and voluntary locomotor behaviors under normoxia and hypoxia to find the conditions that limited each performance. Extreme high (>30°C) and low (<12°C) temperatures limited respiration and activity, but respiration rate was most oxygen sensitive at low temperatures. Under hypoxic conditions, activity was less thermally sensitive. Increased activity under high temperatures (22°C-28°C) may be fueled by anaerobic metabolism. Relying on anaerobic energy is a time-limited survival strategy, so further warming and deoxygenation of freshwater systems may limit the spread of this very tolerant invasive species.


Assuntos
Hipóxia , Caramujos , Animais , Água Doce , Espécies Introduzidas , Locomoção/fisiologia , Oxigênio , Caramujos/fisiologia , Temperatura
20.
Front Physiol ; 13: 990390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277198

RESUMO

Accurately predicting the effects of future warming on aquatic ectotherms requires an understanding how thermal history, including average temperature and variation, affects populations of the same species. However, many laboratory studies simplify the thermal environment to focus on specific organismal responses and sacrifice environmental realism. Here, we paired laboratory-based transcriptomic RNA-seq analysis to identify thermally responsive genes with NanoString analysis of a subset of those genes to characterize natural field-based variation in thermal physiology among populations. We tested gene expression responses of three populations of field-acclimatized larval caddisflies (Dicosmoecus gilvipes) from streams in different eco-regions (mountain, valley, and coast) following exposure to current and future summertime temperatures. We hypothesized that distinct thermal histories across eco-regions could differentiate populations at baseline "control" levels of gene expression, as well as gene expression changes in response to daily warming and heat shock. Population-specific patterns of gene expression were apparent under the control and daily warming conditions suggesting that local acclimatization or local adaptation may differentiate populations, while responses to extreme temperatures were similar across populations, indicating that response to thermal stress is canalized. Underlying gene co-expression patterns in the daily warming and heat shock treatments were different, demonstrating the distinct physiological mechanisms involved with thermal acclimatization and response to thermal stress. These results highlight the importance and limitations of studies of the thermal biology of wild-caught organisms in their natural environment, and provide an important resource for researchers of caddisflies and aquatic insects in general.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa