Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Pathol ; 262(4): 480-494, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38300122

RESUMO

Phyllodes tumours (PTs) are rare fibroepithelial lesions of the breast that are classified as benign, borderline, or malignant. As little is known about the molecular underpinnings of PTs, current diagnosis relies on histological examination. However, accurate classification is often difficult, particularly for distinguishing borderline from malignant PTs. Furthermore, PTs can be misdiagnosed as other tumour types with shared histological features, such as fibroadenoma and metaplastic breast cancers. As DNA methylation is a recognised hallmark of many cancers, we hypothesised that DNA methylation could provide novel biomarkers for diagnosis and tumour stratification in PTs, whilst also allowing insight into the molecular aetiology of this otherwise understudied tumour. We generated whole-genome methylation data using the Illumina EPIC microarray in a novel PT cohort (n = 33) and curated methylation microarray data from published datasets including PTs and other potentially histopathologically similar tumours (total n = 817 samples). Analyses revealed that PTs have a unique methylome compared to normal breast tissue and to potentially histopathologically similar tumours (metaplastic breast cancer, fibroadenoma and sarcomas), with PT-specific methylation changes enriched in gene sets involved in KRAS signalling and epithelial-mesenchymal transition. Next, we identified 53 differentially methylated regions (DMRs) (false discovery rate < 0.05) that specifically delineated malignant from non-malignant PTs. The top DMR in both discovery and validation cohorts was hypermethylation at the HSD17B8 CpG island promoter. Matched PT single-cell expression data showed that HSD17B8 had minimal expression in fibroblast (putative tumour) cells. Finally, we created a methylation classifier to distinguish PTs from metaplastic breast cancer samples, where we revealed a likely misdiagnosis for two TCGA metaplastic breast cancer samples. In conclusion, DNA methylation alterations are associated with PT histopathology and hold the potential to improve our understanding of PT molecular aetiology, diagnostics, and risk stratification. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama , Fibroadenoma , Tumor Filoide , Humanos , Feminino , Tumor Filoide/diagnóstico , Tumor Filoide/genética , Tumor Filoide/patologia , Metilação de DNA , Fibroadenoma/diagnóstico , Fibroadenoma/genética , Fibroadenoma/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mama/patologia
2.
BMC Genomics ; 25(1): 251, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448820

RESUMO

BACKGROUND: The Illumina family of Infinium Methylation BeadChip microarrays has been widely used over the last 15 years for genome-wide DNA methylation profiling, including large-scale and population-based studies, due to their ease of use and cost effectiveness. Succeeding the popular HumanMethylationEPIC BeadChip (EPICv1), the recently released Infinium MethylationEPIC v2.0 BeadChip (EPICv2) claims to extend genomic coverage to more than 935,000 CpG sites. Here, we comprehensively characterise the reproducibility, reliability and annotation of the EPICv2 array, based on bioinformatic analysis of both manifest data and new EPICv2 data from diverse biological samples. RESULTS: We find a high degree of reproducibility with EPICv1, evidenced by comparable sensitivity and precision from empirical cross-platform comparison incorporating whole genome bisulphite sequencing (WGBS), and high correlation between technical sample replicates, including between samples with DNA input levels below the manufacturer's recommendation. We provide a full assessment of probe content, evaluating genomic distribution and changes from previous array versions. We characterise EPICv2's new feature of replicated probes and provide recommendations as to the superior probes. In silico analysis of probe sequences demonstrates that probe cross-hybridisation remains a significant problem in EPICv2. By mapping the off-target sites at single nucleotide resolution and comparing with WGBS we show empirical evidence for preferential off-target binding. CONCLUSIONS: Overall, we find EPICv2 a worthy successor to the previous Infinium methylation microarrays, however some technical issues remain. To support optimal EPICv2 data analysis we provide an expanded version of the EPICv2 manifest to aid researchers in understanding probe design, data processing, choosing appropriate probes for analysis and for integration with methylation datasets from previous versions of the Infinium Methylation BeadChip.


Assuntos
Biologia Computacional , Metilação de DNA , Sulfitos , Reprodutibilidade dos Testes , Análise de Dados
3.
Bioinformatics ; 37(15): 2198-2200, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-33367555

RESUMO

SUMMARY: DNA methylation patterns in a cell are associated with gene expression and the phenotype of a cell, including disease states. Bisulphite PCR sequencing is commonly used to assess the methylation profile of genomic regions between different cells. Here we have developed MethPanel, a computational pipeline with an interactive graphical interface to rapidly analyse multiplex bisulphite PCR sequencing data. MethPanel comprises a complete analysis workflow from genomic alignment to DNA methylation calling and supports an unlimited number of PCR amplicons and input samples. MethPanel offers important and unique features, such as calculation of an epipolymorphism score and bisulphite PCR bias correction capabilities, and is designed so that the methylation data from all samples can be processed in parallel. The outputs are automatically forwarded to a shinyApp for convenient display, visualization and remotely sharing data with collaborators and clinicians. AVAILABILITYAND IMPLEMENTATION: MethPanel is freely available at https://github.com/thinhong/MethPanel. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
Cell Mol Life Sci ; 78(3): 1011-1027, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32458023

RESUMO

Modification of the cancer-associated chromatin landscape in response to therapeutic DNA damage influences gene expression and contributes to cell fate. The central histone mark H2Bub1 results from addition of a single ubiquitin on lysine 120 of histone H2B and is an important regulator of gene expression. Following treatment with a platinum-based chemotherapeutic, there is a reduction in global levels of H2Bub1 accompanied by an increase in levels of the tumor suppressor p53. Although total H2Bub1 decreases following DNA damage, H2Bub1 is enriched downstream of transcription start sites of specific genes. Gene-specific H2Bub1 enrichment was observed at a defined group of genes that clustered into cancer-related pathways and correlated with increased gene expression. H2Bub1-enriched genes encompassed fifteen p53 target genes including PPM1D, BTG2, PLK2, MDM2, CDKN1A and BBC3, genes related to ERK/MAPK signalling, those participating in nucleotide excision repair including XPC, and genes involved in the immune response and platinum drug resistance including POLH. Enrichment of H2Bub1 at key cancer-related genes may function to regulate gene expression and influence the cellular response to therapeutic DNA damage.


Assuntos
Cromatina/metabolismo , Dano ao DNA/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Cisplatino/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Mutagênese Sítio-Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
5.
Genome Res ; 28(5): 625-638, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29650553

RESUMO

The growth and progression of solid tumors involves dynamic cross-talk between cancer epithelium and the surrounding microenvironment. To date, molecular profiling has largely been restricted to the epithelial component of tumors; therefore, features underpinning the persistent protumorigenic phenotype of the tumor microenvironment are unknown. Using whole-genome bisulfite sequencing, we show for the first time that cancer-associated fibroblasts (CAFs) from localized prostate cancer display remarkably distinct and enduring genome-wide changes in DNA methylation, significantly at enhancers and promoters, compared to nonmalignant prostate fibroblasts (NPFs). Differentially methylated regions associated with changes in gene expression have cancer-related functions and accurately distinguish CAFs from NPFs. Remarkably, a subset of changes is shared with prostate cancer epithelial cells, revealing the new concept of tumor-specific epigenome modifications in the tumor and its microenvironment. The distinct methylome of CAFs provides a novel epigenetic hallmark of the cancer microenvironment and promises new biomarkers to improve interpretation of diagnostic samples.


Assuntos
Metilação de DNA , Epigenômica/métodos , Neoplasias da Próstata/genética , Microambiente Tumoral/genética , Fibroblastos Associados a Câncer/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Masculino , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/patologia , Sequenciamento Completo do Genoma/métodos
6.
Bioinformatics ; 35(4): 560-570, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30084929

RESUMO

MOTIVATION: A synoptic view of the human genome benefits chiefly from the application of nucleic acid sequencing and microarray technologies. These platforms allow interrogation of patterns such as gene expression and DNA methylation at the vast majority of canonical loci, allowing granular insights and opportunities for validation of original findings. However, problems arise when validating against a "gold standard" measurement, since this immediately biases all subsequent measurements towards that particular technology or protocol. Since all genomic measurements are estimates, in the absence of a "gold standard" we instead empirically assess the measurement precision and sensitivity of a large suite of genomic technologies via a consensus modelling method called the row-linear model. This method is an application of the American Society for Testing and Materials Standard E691 for assessing interlaboratory precision and sources of variability across multiple testing sites. Both cross-platform and cross-locus comparisons can be made across all common loci, allowing identification of technology- and locus-specific tendencies. RESULTS: We assess technologies including the Infinium MethylationEPIC BeadChip, whole genome bisulfite sequencing (WGBS), two different RNA-Seq protocols (PolyA+ and Ribo-Zero) and five different gene expression array platforms. Each technology thus is characterised herein, relative to the consensus. We showcase a number of applications of the row-linear model, including correlation with known interfering traits. We demonstrate a clear effect of cross-hybridisation on the sensitivity of Infinium methylation arrays. Additionally, we perform a true interlaboratory test on a set of samples interrogated on the same platform across twenty-one separate testing laboratories. AVAILABILITY AND IMPLEMENTATION: A full implementation of the row-linear model, plus extra functions for visualisation, are found in the R package consensus at https://github.com/timpeters82/consensus. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Metilação de DNA , Genômica , Genoma Humano , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Software
7.
Genome Res ; 26(6): 719-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053337

RESUMO

A three-dimensional chromatin state underpins the structural and functional basis of the genome by bringing regulatory elements and genes into close spatial proximity to ensure proper, cell-type-specific gene expression profiles. Here, we performed Hi-C chromosome conformation capture sequencing to investigate how three-dimensional chromatin organization is disrupted in the context of copy-number variation, long-range epigenetic remodeling, and atypical gene expression programs in prostate cancer. We find that cancer cells retain the ability to segment their genomes into megabase-sized topologically associated domains (TADs); however, these domains are generally smaller due to establishment of additional domain boundaries. Interestingly, a large proportion of the new cancer-specific domain boundaries occur at regions that display copy-number variation. Notably, a common deletion on 17p13.1 in prostate cancer spanning the TP53 tumor suppressor locus results in bifurcation of a single TAD into two distinct smaller TADs. Change in domain structure is also accompanied by novel cancer-specific chromatin interactions within the TADs that are enriched at regulatory elements such as enhancers, promoters, and insulators, and associated with alterations in gene expression. We also show that differential chromatin interactions across regulatory regions occur within long-range epigenetically activated or silenced regions of concordant gene activation or repression in prostate cancer. Finally, we present a novel visualization tool that enables integrated exploration of Hi-C interaction data, the transcriptome, and epigenome. This study provides new insights into the relationship between long-range epigenetic and genomic dysregulation and changes in higher-order chromatin interactions in cancer.


Assuntos
Cromatina/genética , Epigênese Genética , Neoplasias/genética , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Neoplasias/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/fisiologia
8.
Trends Genet ; 30(2): 75-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24368016

RESUMO

There are over 28 million CpG sites in the human genome. Assessing the methylation status of each of these sites will be required to understand fully the role of DNA methylation in health and disease. Genome-wide analysis, using arrays and high-throughput sequencing, has enabled assessment of large fractions of the methylome, but each protocol comes with unique advantages and disadvantages. Notably, except for whole-genome bisulfite sequencing, most commonly used genome-wide methods detect <5% of all CpG sites. Here, we discuss approaches for methylome studies and compare genome coverage of promoters, genes, and intergenic regions, and capacity to quantitate individual CpG methylation states. Finally, we examine the extent of published cancer methylomes that have been generated using genome-wide approaches.


Assuntos
Metilação de DNA , Epigenômica , Neoplasias/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Bases de Dados Genéticas , Epigênese Genética , Epigenômica/métodos , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet
9.
Genome Res ; 22(12): 2489-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22879430

RESUMO

Developments in microarray and high-throughput sequencing (HTS) technologies have resulted in a rapid expansion of research into epigenomic changes that occur in normal development and in the progression of disease, such as cancer. Not surprisingly, copy number variation (CNV) has a direct effect on HTS read densities and can therefore bias differential detection results. We have developed a flexible approach called ABCD-DNA (affinity-based copy-number-aware differential quantitative DNA sequencing analyses) that integrates CNV and other systematic factors directly into the differential enrichment engine.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Algoritmos , DNA/genética , Metilação de DNA , Loci Gênicos , Humanos
10.
Genome Res ; 22(6): 1120-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22466171

RESUMO

The complex relationship between DNA methylation, chromatin modification, and underlying DNA sequence is often difficult to unravel with existing technologies. Here, we describe a novel technique based on high-throughput sequencing of bisulfite-treated chromatin immunoprecipitated DNA (BisChIP-seq), which can directly interrogate genetic and epigenetic processes that occur in normal and diseased cells. Unlike most previous reports based on correlative techniques, we found using direct bisulfite sequencing of Polycomb H3K27me3-enriched DNA from normal and prostate cancer cells that DNA methylation and H3K27me3-marked histones are not always mutually exclusive, but can co-occur in a genomic region-dependent manner. Notably, in cancer, the co-dependency of marks is largely redistributed with an increase of the dual repressive marks at CpG islands and transcription start sites of silent genes. In contrast, there is a loss of DNA methylation in intergenic H3K27me3-marked regions. Allele-specific methylation status derived from the BisChIP-seq data clearly showed that both methylated and unmethylated alleles can simultaneously be associated with H3K27me3 histones, highlighting that DNA methylation status in these regions is not dependent on Polycomb chromatin status. BisChIP-seq is a novel approach that can be widely applied to directly interrogate the genomic relationship between allele-specific DNA methylation, histone modification, or other important epigenetic regulators.


Assuntos
Cromatina/genética , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Histonas/metabolismo , Neoplasias da Próstata/genética , Alelos , Linhagem Celular , Cromatina/efeitos dos fármacos , Imunoprecipitação da Cromatina , Ilhas de CpG , Epigênese Genética , Células Epiteliais/fisiologia , Humanos , Masculino , Próstata/citologia , Valores de Referência , Sulfitos/farmacologia
11.
Genome Res ; 22(2): 307-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21788347

RESUMO

Histone H2A.Z (H2A.Z) is an evolutionarily conserved H2A variant implicated in the regulation of gene expression; however, its role in transcriptional deregulation in cancer remains poorly understood. Using genome-wide studies, we investigated the role of promoter-associated H2A.Z and acetylated H2A.Z (acH2A.Z) in gene deregulation and its relationship with DNA methylation and H3K27me3 in prostate cancer. Our results reconcile the conflicting reports of positive and negative roles for histone H2A.Z and gene expression states. We find that H2A.Z is enriched in a bimodal distribution at nucleosomes, surrounding the transcription start sites (TSSs) of both active and poised gene promoters. In addition, H2A.Z spreads across the entire promoter of inactive genes in a deacetylated state. In contrast, acH2A.Z is only localized at the TSSs of active genes. Gene deregulation in cancer is also associated with a reorganization of acH2A.Z and H2A.Z nucleosome occupancy across the promoter region and TSS of genes. Notably, in cancer cells we find that a gain of acH2A.Z at the TSS occurs with an overall decrease of H2A.Z levels, in concert with oncogene activation. Furthermore, deacetylation of H2A.Z at TSSs is increased with silencing of tumor suppressor genes. We also demonstrate that acH2A.Z anti-correlates with promoter H3K27me3 and DNA methylation. We show for the first time, that acetylation of H2A.Z is a key modification associated with gene activity in normal cells and epigenetic gene deregulation in tumorigenesis.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Neoplasias/genética , Acetilação , Linhagem Celular Tumoral , Metilação de DNA , Genes Supressores de Tumor , Humanos , Masculino , Modelos Biológicos , Neoplasias/metabolismo , Nucleossomos/metabolismo , Oncogenes , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transporte Proteico , Sítio de Iniciação de Transcrição , Ativação Transcricional
12.
Nat Genet ; 38(5): 540-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16642018

RESUMO

We report a new mechanism in carcinogenesis involving coordinate long-range epigenetic gene silencing. Epigenetic silencing in cancer has always been envisaged as a local event silencing discrete genes. However, in this study of silencing in colorectal cancer, we found common repression of the entire 4-Mb band of chromosome 2q.14.2, associated with global methylation of histone H3 Lys9. DNA hypermethylation within the repressed genomic neighborhood was localized to three separate enriched CpG island 'suburbs', with the largest hypermethylated suburb spanning 1 Mb. These data change our understanding of epigenetic gene silencing in cancer cells: namely, epigenetic silencing can span large regions of the chromosome, and both DNA-methylated and neighboring unmethylated genes can be coordinately suppressed by global changes in histone modification. We propose that loss of gene expression can occur through long-range epigenetic silencing, with similar implications as loss of heterozygosity in cancer.


Assuntos
Bandeamento Cromossômico , Cromossomos Humanos Par 2 , Neoplasias Colorretais/genética , Epigênese Genética , Cromatina/genética , Metilação de DNA , Inativação Gênica , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Nat Struct Mol Biol ; 31(3): 498-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182927

RESUMO

Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Decitabina/farmacologia , Decitabina/uso terapêutico , Decitabina/metabolismo , Epigenoma , Metilação de DNA/genética , Cromatina , Epigênese Genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica
14.
Genome Res ; 20(12): 1719-29, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21045081

RESUMO

DNA methylation is an essential epigenetic modification that plays a key role associated with the regulation of gene expression during differentiation, but in disease states such as cancer, the DNA methylation landscape is often deregulated. There are now numerous technologies available to interrogate the DNA methylation status of CpG sites in a targeted or genome-wide fashion, but each method, due to intrinsic biases, potentially interrogates different fractions of the genome. In this study, we compare the affinity-purification of methylated DNA between two popular genome-wide techniques, methylated DNA immunoprecipitation (MeDIP) and methyl-CpG binding domain-based capture (MBDCap), and show that each technique operates in a different domain of the CpG density landscape. We explored the effect of whole-genome amplification and illustrate that it can reduce sensitivity for detecting DNA methylation in GC-rich regions of the genome. By using MBDCap, we compare and contrast microarray- and sequencing-based readouts and highlight the impact that copy number variation (CNV) can make in differential comparisons of methylomes. These studies reveal that the analysis of DNA methylation data and genome coverage is highly dependent on the method employed, and consideration must be made in light of the GC content, the extent of DNA amplification, and the copy number.


Assuntos
Ilhas de CpG/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA , Genoma Humano/genética , Imunoprecipitação/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Linhagem Celular Tumoral , Mapeamento Cromossômico , Humanos , Análise em Microsséries/métodos , Análise de Sequência de DNA/métodos
15.
Sci Adv ; 9(9): eabp8314, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867694

RESUMO

Gene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network. Furthermore, we reveal that the memory of this initially random state is retained following chemotherapy treatment across a series of in vitro, in vivo, and patient models. Using matched PDX models established at diagnosis and relapse from individual patients, we show that HDAC inhibitor priming cannot erase the memory of this resistant state within relapsed neuroblastomas but improves response in the first-line setting by restoring drug-induced JNK activity within the chemoresistant population of treatment-naïve tumors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neuroblastoma , Humanos , Apoptose , Transdução de Sinais , Inibidores de Histona Desacetilases
16.
Cancers (Basel) ; 14(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35158742

RESUMO

Epigenetic therapies remain a promising, but still not widely used, approach in the management of patients with cancer. To date, the efficacy and use of epigenetic therapies has been demonstrated primarily in the management of haematological malignancies, with limited supportive data in solid malignancies. The most studied epigenetic therapies in breast cancer are those that target DNA methylation and histone modification; however, none have been approved for routine clinical use. The majority of pre-clinical and clinical studies have focused on triple negative breast cancer (TNBC) and hormone-receptor positive breast cancer. Even though the use of epigenetic therapies alone in the treatment of breast cancer has not shown significant clinical benefit, these therapies show most promise in use in combinations with other treatments. With improving technologies available to study the epigenetic landscape in cancer, novel epigenetic alterations are increasingly being identified as potential biomarkers of response to conventional and epigenetic therapies. In this review, we describe epigenetic targets and potential epigenetic biomarkers in breast cancer, with a focus on clinical trials of epigenetic therapies. We describe alterations to the epigenetic landscape in breast cancer and in treatment resistance, highlighting mechanisms and potential targets for epigenetic therapies. We provide an updated review on epigenetic therapies in the pre-clinical and clinical setting in breast cancer, with a focus on potential real-world applications. Finally, we report on the potential value of epigenetic biomarkers in diagnosis, prognosis and prediction of response to therapy, to guide and inform the clinical management of breast cancer patients.

17.
Clin Transl Med ; 12(10): e1030, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36178085

RESUMO

BACKGROUND: Prostate cancer is a clinically heterogeneous disease with a subset of patients rapidly progressing to lethal-metastatic prostate cancer. Current clinicopathological measures are imperfect predictors of disease progression. Epigenetic changes are amongst the earliest molecular changes in tumourigenesis. To find new prognostic biomarkers to enable earlier intervention and improved outcomes, we performed methylome sequencing of DNA from patients with localised prostate cancer and long-term clinical follow-up. METHODS: We used whole-genome bisulphite sequencing (WGBS) to comprehensively map and compare DNA methylation of radical prostatectomy tissue between patients with lethal disease (n = 7) and non-lethal (n = 8) disease (median follow-up 19.5 years). Validation of differentially methylated regions (DMRs) was performed in an independent cohort (n = 185, median follow-up 15 years) using targeted multiplex bisulphite sequencing of candidate regions. Survival was assessed via univariable and multivariable analyses including clinicopathological measures (log-rank and Cox regression models). RESULTS: WGBS data analysis identified cancer-specific methylation patterns including CpG island hypermethylation, and hypomethylation of repetitive elements, with increasing disease risk. We identified 1420 DMRs associated with prostate cancer-specific mortality (PCSM), which showed enrichment for gene sets downregulated in prostate cancer and de novo methylated in cancer. Through comparison with public prostate cancer datasets, we refined the DMRs to develop an 18-gene prognostic panel. Applying this panel to an independent cohort, we found significant associations between PCSM and hypermethylation at EPHB3, PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strikingly in a multivariable model, inclusion of CACNA2D4 methylation was a better predictor of PCSM versus grade alone (Harrell's C-index: 0.779 vs. 0.684). CONCLUSIONS: Our study provides detailed methylome maps of non-lethal and lethal prostate cancer and identifies novel genic regions that distinguish these patient groups. Inclusion of our DNA methylation biomarkers with existing clinicopathological measures improves prognostic models of prostate cancer mortality, and holds promise for clinical application.


Assuntos
Epigenoma , Neoplasias da Próstata , ADP Ribose Transferases/genética , DNA , Epigênese Genética/genética , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Sulfitos
18.
Hum Mol Genet ; 18(16): 3098-109, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19477956

RESUMO

Changes in the epigenetic landscape are widespread in neoplasia, with de novo methylation and histone repressive marks commonly enriched in CpG island associated promoter regions. DNA hypermethylation and histone repression correlate with gene silencing, however, the dynamics of this process are still largely unclear. The tumour suppressor gene p16(INK4A) is inactivated in association with CpG island methylation during neoplastic progression in a variety of cancers, including breast cancer. Here, we investigated the temporal progression of DNA methylation and histone remodelling in the p16(INK4A) CpG island in primary human mammary epithelial cell (HMEC) strains during selection, as a model for early breast cancer. Silencing of p16(INK4A) has been previously shown to be necessary before HMECs can escape from selection. Here, we demonstrate that gene silencing occurs prior to de novo methylation and histone remodelling. An increase in DNA methylation was associated with a rapid loss of both histone H3K27 trimethylation and H3K9 acetylation and a gradual gain of H3K9 dimethylation. Interestingly, we found that regional-specific 'seeding' methylation occurs early after post-selection and that the de novo methylation pattern observed in HMECs correlates with the apparent footprint of nucleosomes across the p16(INK4A) CpG island. Our results demonstrate for the first time that p16(INK4A) gene silencing is a precursor to epigenetic suppression and that subsequent de novo methylation initially occurs in nucleosome-free regions across the p16(INK4A) CpG island and this is associated with a dynamic change in histone modifications.


Assuntos
Neoplasias da Mama/genética , Montagem e Desmontagem da Cromatina , Ilhas de CpG , Inibidor p16 de Quinase Dependente de Ciclina/genética , Metilação de DNA , Inativação Gênica , Nucleossomos/metabolismo , Acetilação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epigênese Genética , Células Epiteliais/metabolismo , Feminino , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Nucleossomos/genética
19.
Bioinformatics ; 26(13): 1662-3, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20457667

RESUMO

SUMMARY: Epigenetics, the study of heritable somatic phenotypic changes not related to DNA sequence, has emerged as a critical component of the landscape of gene regulation. The epigenetic layers, such as DNA methylation, histone modifications and nuclear architecture are now being extensively studied in many cell types and disease settings. Few software tools exist to summarize and interpret these datasets. We have created a toolbox of procedures to interrogate and visualize epigenomic data (both array- and sequencing-based) and make available a software package for the cross-platform R language. AVAILABILITY: The package is freely available under LGPL from the R-Forge web site (http://repitools.r-forge.r-project.org/) CONTACT: mrobinson@wehi.edu.au.


Assuntos
Epigênese Genética , Genômica/métodos , Software , Metilação de DNA , Histonas/análise , Histonas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos
20.
Clin Epigenetics ; 13(1): 226, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922619

RESUMO

Neoadjuvant chemotherapy (NAC) is used to treat triple-negative breast cancer (TNBC) prior to resection. Biomarkers that accurately predict a patient's response to NAC are needed to individualise therapy and avoid chemotoxicity from unnecessary chemotherapy. We performed whole-genome DNA methylation profiling on diagnostic TNBC biopsy samples from the Sequential Evaluation of Tumours Undergoing Preoperative (SETUP) NAC study. We found 9 significantly differentially methylated regions (DMRs) at diagnosis which were associated with response to NAC. We show that 4 of these DMRs are associated with TNBC overall survival (P < 0.05). Our results highlight the potential of DNA methylation biomarkers for predicting NAC response in TNBC.


Assuntos
Biomarcadores Farmacológicos/análise , Biomarcadores Tumorais/análise , Terapia Neoadjuvante/normas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Biomarcadores Tumorais/genética , Metilação de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Terapia Neoadjuvante/estatística & dados numéricos , Prognóstico , Modelos de Riscos Proporcionais , Neoplasias de Mama Triplo Negativas/etiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa