Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Cancer ; 24(1): 616, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773406

RESUMO

BACKGROUND: DNA-Damaged Binding protein 2 (DDB2) is a protein involved in the early step of Nucleotide Excision Repair. Recently, it has been reported that DDB2 is involved in epithelial-to-mesenchymal transition (EMT), key process in tumour invasiveness and metastasis formation. However, its role is not completely known. METHODS: Boyden chamber and cell adhesion assays, and ICELLigence analysis were performed to detect HEK293 adhesion and invasion. Western blotting and gelatine zymography techniques were employed to assess the EMT protein levels and MMP enzymatic activity. Immunofluorescence analysis and pull-down assays facilitated the detection of NF-kB sub-cellular localization and interaction. RESULTS: We have previously demonstrated that the loss of DDB2-PCNA binding favours genome instability, and increases cell proliferation and motility. Here, we have investigated the phenotypic and molecular EMT-like changes after UV DNA damage, in HEK293 clones stably expressing DDB2Wt protein or a mutant form unable to interact with PCNA (DDB2PCNA-), as well as in HeLa cells transiently expressing the same DDB2 constructs. Cells expressing DDB2PCNA- showed morphological modifications along with a reduced expression of E-cadherin, an increased activity of MMP-9 and an improved ability to migrate, in concomitance with a significant upregulation of EMT-associated Transcription Factors (TFs), whose expression has been reported to favour tumour invasion. We observed a higher expression of c-Myc oncogene, NF-kB, both regulating cell proliferation and metastatic process, as well as ZEB1, a TF significantly associated with tumorigenic potential and cell migratory ability. Interestingly, a novel interaction of DDB2 with NF-kB was detected and found to be increased in cells expressing the DDB2PCNA-, suggesting a direct modulation of NF-kB by DDB2. CONCLUSION: These results highlight the role of DDB2-PCNA interaction in counteracting EMT since DDB2PCNA- protein induces in HEK293 transformed cells a gain of function contributing to the acquisition of a more aggressive phenotype.


Assuntos
Movimento Celular , Dano ao DNA , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , NF-kappa B , Antígeno Nuclear de Célula em Proliferação , Raios Ultravioleta , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , NF-kappa B/metabolismo , Raios Ultravioleta/efeitos adversos , Células HEK293 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Células HeLa , Transdução de Sinais , Adesão Celular , Proliferação de Células , Ligação Proteica , Mutação
2.
Biochem Soc Trans ; 49(4): 1803-1816, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436513

RESUMO

Cancer has been traditionally viewed as a disease characterised by excessive and uncontrolled proliferation, leading to the development of cytotoxic therapies against highly proliferating malignant cells. However, tumours frequently relapse due to the presence of slow-cycling cancer stem cells eluding chemo and radiotherapy. Since these malignant stem cells are largely undifferentiated, inducing their lineage commitment has been proposed as a potential intervention strategy to deplete tumours from their most resistant components. Pro-differentiation approaches have thus far yielded clinical success in the reversion of acute promyelocytic leukaemia (APL), and new developments are fast widening their therapeutic applicability to solid carcinomas. Recent advances in cancer differentiation discussed here highlight the potential and outstanding challenges of differentiation-based approaches.


Assuntos
Diferenciação Celular , Modelos Biológicos , Neoplasias/patologia , Humanos
3.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 898-907, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29604309

RESUMO

In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2Wt and DDB2PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Raios Ultravioleta
4.
Molecules ; 24(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533249

RESUMO

Bellevalia saviczii is a medicinal plant used as anti-rheumatic and anti-inflammatory herbal remedy in Iraqi-Kurdistan. The aim of this study was to evaluate the anti-inflammatory activity of its extract and the isolated homoisoflavonoid (Dracol) by studying the Ca2+-dependent NF-kB pathway. Nuclear translocation of p65 NF-kB subunit, as parameter of NF-kB activation, was visualized in human leukemic monocytes by immunofluorescence and Western blot analyses, after cell treatment with B. saviczii root extract or Dracol followed by Lipopolysaccharide stimulation. In parallel, Ca2+ signals responsible for NF-kB activation and levels of inflammatory cytokines were investigated. LPS-induced p65 translocation was evident in monocytes and both treatments, in particular that with Dracol, were able to counteract this activation. Intracellular Ca2+ oscillations were halted and the cytokine release reduced. These results confirm the traditional anti-inflammatory efficacy of B. saviczii and identify one of the molecules in the extract which appears to be responsible of this action.


Assuntos
Anti-Inflamatórios/farmacologia , Asparagales/química , Sinalização do Cálcio/efeitos dos fármacos , Isoflavonas/farmacologia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Fracionamento Químico , Citocinas/metabolismo , Humanos , Isoflavonas/química , Isoflavonas/isolamento & purificação , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais
5.
Exp Dermatol ; 27(9): 973-980, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29742305

RESUMO

Red grape (Vitis vinifera L.) flavonoids including flavan-3-ols (eg, catechin and epicatechin), flavonols (eg, quercetin) and anthocyanins (eg, malvidin) exert anti-inflammatory and antioxidant activities. In the skin they also have a photoprotective action, and their effects have been extensively investigated in keratinocytes, melanocytes and fibroblasts. Despite their known effects also on blood vasculature, little is known on their activities on human dermal blood endothelial cells (HDBECs), which are critically involved in skin homeostasis as well as in the pathogenesis of neoplastic and inflammatory skin diseases. We sought to study the biological effects of selected red grape flavonoids in preventing the consequences of ultraviolet (UV)-A irradiation in vitro. Our results show that red grape flavonoids prevent UV-A-induced sICAM-1 release in HDBECs, suggesting that this cell type could represent an additional target of the anti-inflammatory activity of flavonoids. In addition, flavonoids effectively inhibited UV-A-induced synthesis of collagen type III at both RNA and protein level, indicating that dermal blood microvasculature could be actively involved in ECM remodelling as a consequence of skin photo-ageing, and that this can be prevented by red grape flavonoids.


Assuntos
Colágeno Tipo III/biossíntese , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Vitis , Catequina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo III/genética , Frutas , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Dímeros de Pirimidina/metabolismo , Quercetina/análogos & derivados , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Raios Ultravioleta , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
6.
Carcinogenesis ; 33(11): 2172-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22828135

RESUMO

4,4'-dihydroxy-trans-stilbene (DHS) is a synthetic analog of resveratrol, a phytoalexin known for its biological activities. We previously demonstrated that DHS exerts an antiproliferative effect on normal human fibroblasts that is higher than that of the natural parent molecule. No evidence regarding its role in human cancer cell lines has been found thus far. In this study, we investigated the effects of DHS both on chemical-induced transformation of BALB/c 3T3 mouse fibroblasts and on the proliferation and invasion of human breast cancer MCF-7 cells. The results showed that DHS markedly suppresses the two-stage (3-methylcholanthrene plus 12-O-tetradecanoylphorbol-13-acetate) cell transformation. Compared with resveratrol, DHS inhibited both anchorage-dependent and -independent MCF-7 growth more efficiently. In addition, a reduction in the number of cells in S-phase, characterized by a concomitant increase in the levels of p21 and p53 proteins, together with a strong inhibition of pRb protein phosphorylation, was observed in DHS-treated cells. Furthermore, DHS effected a strong reduction in matrix metalloproteinase-2 and -9 activities, concomitantly with a marked inhibition of cell adhesion to the extracellular matrix components as well as inhibition of cell migration and invasion. Importantly, modulation of the adhesion molecule E-cadherin was also found in DHS-treated cells. Taken together, these results demonstrate that the two 4,4'-hydroxyl groups on the stilbenic backbone make DHS a more active molecule than resveratrol in inhibiting neoplastic transformation, cancer cell proliferation and invasion. In conclusion, this study suggests that DHS could be a promising anticancer agent.


Assuntos
Adenocarcinoma/prevenção & controle , Neoplasias da Mama/prevenção & controle , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Estilbenos/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Ensaio Tumoral de Célula-Tronco , Cicatrização/efeitos dos fármacos
7.
Biomedicines ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892684

RESUMO

Lung cancer is the most prevalent cancer worldwide. Despite advances in surgery and immune-chemotherapy, the therapeutic outcome remains poor. In recent years, the anticancer properties of natural compounds, along with their low toxic side effects, have attracted the interest of researchers. Resveratrol (RSV) and many of its derivatives received particular attention for their beneficial bioactivity. Here we studied the activity of RSV and of its analogue 4,4'-dihydroxystilbene (DHS) in C57BL/6J mice bearing cancers resulting from Lung Lewis Carcinoma (LLC) cell implantation, considering tumour mass weight, angiogenesis, cell proliferation and death, autophagy, as well as characterization of their immune microenvironment, including infiltrating cancer-associated fibroblasts (CAFs). C57BL/6J mice started treatment with RSV or DHS, solubilised in drinking water, one week before LLC implantation, and continued for 21 days, at the end of which they were sacrificed, and the tumour masses collected. Histology was performed according to standard procedures; angiogenesis, cell proliferation and death, autophagy, infiltrating-immune cells, macrophages and fibroblasts were assessed by immunodetection assays. Both stilbenic compounds were able to contrast the tumour growth by increasing apoptosis and autophagy in LLC tumour masses. Additionally, they contrasted the tumour-permissive microenvironment by limiting the infiltration of tumour-associated immune-cells and, more importantly, by counteracting CAF maturation. Therefore, both stilbenes could be employed to synergise with conventional oncotherapies to limit the contribution of stromal cells in tumour growth.

8.
Mol Cancer Ther ; 7(12): 3761-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19074851

RESUMO

Angiogenesis is target for antineoplastic and chemopreventive therapies. The natural phytoalexin resveratrol is found in grapes and red wine as cis and trans stereoisomers. trans-Resveratrol shows antiangiogenic activity, but its mechanism of action is not fully elucidated. Recently, trans-resveratrol has been shown to interact with the beta3 integrin subunit, raising the possibility that inhibition of endothelial alphavbeta3 integrin function may concur to its angiosuppressive activity. To get novel insights about the antiangiogenic activity of resveratrol, we compared cis- and trans-resveratrol stereoisomers for their effect on the angiogenesis process and endothelial alphavbeta3 integrin function. trans-Resveratrol inhibits endothelial cell proliferation and the repair of mechanically wounded endothelial cell monolayers. Also, it prevents endothelial cell sprouting in fibrin gel, collagen gel invasion, and morphogenesis on Matrigel. In vivo, trans-resveratrol inhibits vascularization of the chick embryo area vasculosa and murine melanoma B16 tumor growth and neovascularization. In all the assays, cis-resveratrol exerts a limited, if any, effect. In keeping with these observations, trans-resveratrol, but not cis-resveratrol, inhibits alphavbeta3 integrin-dependent endothelial cell adhesion and the recruitment of enhanced green fluorescent protein-tagged beta3 integrin in focal adhesion contacts. In conclusion, stereoisomery affects the antiangiogenic activity of resveratrol, the trans isomer being significantly more potent than the cis isoform. The different antiangiogenic potential of resveratrol stereoisomers is related, at least in part, to their different capacity to affect alphavbeta3 integrin function. This may have profound implications for the design of synthetic antiangiogenic/angiopreventive phytoalexin derivatives.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Integrina alfaVbeta3/metabolismo , Neovascularização Patológica , Estilbenos/farmacologia , Inibidores da Angiogênese/química , Animais , Antineoplásicos Fitogênicos/química , Bovinos , Embrião de Galinha , Células Endoteliais/citologia , Feminino , Humanos , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Resveratrol , Estereoisomerismo , Estilbenos/química
9.
DNA Repair (Amst) ; 51: 79-84, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28185850

RESUMO

Among different DNA repair processes that cells use to face with DNA damage, nucleotide excision repair (NER) is particularly important for the removal of a high variety of lesions, including those generated by some antitumor drugs. A number of factors participating in NER, such as the TFIIH complex and the endonuclease XPG are also involved in basal processes, e.g. transcription. For this reason, localization of these factors at DNA damage sites may be difficult. Here we have applied a mild digestion of chromatin with DNase I to improve the in situ extraction necessary to detect chromatin-bound proteins by immunofluorescence. We have compared this method with different extraction protocols and investigated its application on different cell types, and with different antibodies. Our results show that a short DNase I treatment before the immunoreaction, enhances the fluorescence signal of NER proteins, such as XPG, DDB2 and XPC. In addition, our findings indicate that the antibody choice is a critical factor for accurate localization of DNA repair proteins at DNA damage sites. In conclusion, a mild DNA digestion with DNase I improves the immunofluorescence detection of the recruitment of NER factors at local DNA damage sites by enhancing accessibility to the antibodies, independently of the cell type.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/análise , Reparo do DNA , Imunofluorescência/métodos , Raios Ultravioleta , Cromatina/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Desoxirribonuclease I/metabolismo , Humanos , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo
10.
Eur J Hum Genet ; 25(5): 646-650, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28198391

RESUMO

Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Patela/anormalidades , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Criança , Códon sem Sentido , Microtia Congênita/diagnóstico , Replicação do DNA , Exoma , Teste de Complementação Genética , Transtornos do Crescimento/diagnóstico , Humanos , Mutação INDEL , Masculino , Micrognatismo/diagnóstico , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética
11.
Sci Rep ; 6: 19973, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26829331

RESUMO

We investigated the preventive effects of resveratrol analogue 4,4'-dihydroxy-trans-stilbene (DHS) on cancer invasion and metastasis. Two different in vivo approaches of mouse and zebrafish lung cancer invasion models were employed in our study. The in vitro results showed that DHS displays potent inhibition on anchorage-dependent or -independent cell growth of LLC cells, leading to impairment of the cell cycle progression with reduction of cell numbers arresting at the G1 phase, an evident accumulation of pre-G1 events correlated with apoptotic behaviour. In addition, DHS induces a marked inhibition of LLC cell migration and matrigel invasion. In a murine lung cancer model, tumour volume, cell proliferation, and tumour angiogenesis were significantly inhibited by DHS. Importantly, liver metastatic lesions were significantly reduced in DHS-treated mice. Similarly, DHS significantly inhibits lung cancer cell dissemination, invasion and metastasis in a zebrafish tumour model. These findings demonstrate that DHS could potentially be developed as a novel therapeutic agent for treatment of cancer and metastasis.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Estilbenos/farmacologia , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Invasividade Neoplásica , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Resveratrol , Estilbenos/química , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cell Cycle ; 14(24): 3920-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697842

RESUMO

DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
13.
Cell Cycle ; 13(2): 240-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24200966

RESUMO

DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21(CDKN1A) (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Raios Ultravioleta/efeitos adversos , Sequência de Aminoácidos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Photochem Photobiol B ; 140: 57-68, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25105482

RESUMO

The photobehavior of ciprofloxacin, lomefloxacin and ofloxacin fluoroquinolones was investigated using several in vitro methods to assess their cytotoxic, antiproliferative, and genotoxic potential against two human cancer cell lines. We focused our attention on the possible relationship between their chemical structure, O2 partial pressure and photobiological activity on cancer cells. The three molecules share the main features of most fluoroquinolones, a fluorine in 6 and a piperazino group in 7, but differ at the key position 8, unsubstituted in ciprofloxacin, a fluorine in lomefloxacin and an alkoxy group in ofloxacin. Studies in solution show that ofloxacin has a low photoreactivity; lomefloxacin reacts via aryl cation, ciprofloxacin reacts but not via the cation. In our experiments, ciprofloxacin and lomefloxacin showed a high and comparable potential for photodamaging cells and DNA. Lomefloxacin appeared the most efficient molecule in hypoxia, acting mainly against tumour cell proliferation and generating DNA plasmid photocleavage. Although our results do not directly provide evidence that a carbocation is involved in photodamage induced by lomefloxacin, our data strongly support this hypothesis. This may lead to new and more efficient anti-tumour drugs involving a cation in their mechanism of action. This latter acting independently of oxygen, can target hypoxic tumour tissue.


Assuntos
Fluoroquinolonas/química , Oxigênio/química , Fármacos Fotossensibilizantes/química , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Hipóxia Celular , Linhagem Celular Tumoral , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Fluoroquinolonas/toxicidade , Células HeLa , Humanos , Fármacos Fotossensibilizantes/toxicidade , Plasmídeos/efeitos dos fármacos , Plasmídeos/metabolismo , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Relação Estrutura-Atividade , Raios Ultravioleta
15.
J Med Food ; 14(10): 1173-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21554123

RESUMO

Resveratrol inhibits endothelin-1, a vascular tension regulator. We synthesized the resveratrol analogue 4,4'-dihydroxy-trans-stilbene with 2 hydroxyl groups in the 4 and 4' position to obtain a molecule more active than resveratrol (3,4',5-trihydroxy-trans-stilbene). The results demonstrate that 4,4'-dihydroxy-trans-stilbene led to a significant decrease in total endothelin-1 secretion and in endothelin-1 messenger RNA (mRNA) levels in human endothelial cells. In addition, resveratrol and its analogue decreased endothelin-converting enzyme-1 mRNA levels and further reduced the activity of the enzyme. 4,4'-dihydroxy-trans-stilbene was more active than resveratrol because the new molecule exerted greater activity at the level of endothelin synthesis and conversion, even at a lower concentration. Although 4,4'-dihydroxy-trans-stilbene and resveratrol inhibited formation of reactive oxygen species and lipid peroxidation, the treatment of cells with different oxidant agents did not modify the endothelin-1 release. This finding suggests that the inhibition of endothelin-1 secretion is independent of the antioxidant properties of the 2 compounds. On the basis of these results, the resveratrol analogue 4,4'-dihydroxy-trans-stilbene could be a promising chemopreventive agent against cardiovascular diseases.


Assuntos
Antioxidantes/farmacologia , Endotelina-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estilbenos/farmacologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular , Endotelina-1/antagonistas & inibidores , Enzimas Conversoras de Endotelina , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade
16.
Cell Cycle ; 8(1): 105-14, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19106607

RESUMO

The cell cycle inhibitor p21(CDKN1A) induces cell cycle arrest under different conditions, including senescence and terminal differentiation. Still debated is its involvement in the reversible transition from proliferation to a non-dividing quiescent state (G(0)), in which a significant role has been attributed to cell cycle inhibitor p27(CDKN1B). Here we provide evidence showing that high p21 protein levels are necessary to enter and maintain the quiescence state following contact inhibition and growth factor withdrawal. In fact, entry into quiescence was impaired, both in human fibroblasts in which p21 gene has been deleted, or protein expression knocked-down by RNA interference. Importantly, in the absence of p21, human fibroblasts activate a DNA damage-like signalling pathway, as shown by phosphorylation of histone H2AX and Chk1 proteins. In addition, we show that in the absence of p21, checkpoint is activated by an unscheduled entry into S phase, with a reduced efficiency in DNA maturation, in the presence of high c-myc protein levels. These results highlight the role of p21 in counteracting inappropriate proliferation stimuli for genome stability maintenance.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Dano ao DNA , Fibroblastos/citologia , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , DNA/biossíntese , Replicação do DNA , Fibroblastos/enzimologia , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Soro , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
17.
Mol Nutr Food Res ; 53(7): 845-58, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19496085

RESUMO

Resveratrol (RSV) is classified as a phytoestrogen due to its ability to interact with estrogen receptors (ERs). We assessed structure-activity relationships of RSV and the analogs 4,4'-dihydroxystilbene (4,4'-DHS), 3,5-dihydroxystilbene (3,5-DHS), 3,4'-dihydroxystilbene (3,4'-DHS), 4-hydroxystilbene (4-HS) using as model systems the ERalpha-positive and negative MCF7 and SkBr3 breast cancer cells, respectively. In binding assays and transfection experiments RSV and the analogs showed the following order of agonism for ERalpha: 3,4'-DHS > 4,4'-DHS > 4-HS > RSV, while 3,5-DHS did not elicit any ligand properties. Computational docking analysis and real-time PCR revealed for each analog a distinct ERalpha binding orientation and estrogen target gene expression profile. Interestingly, the aforementioned order of ligand activity was confirmed in proliferation assays which also showed the lack of growth stimulation by 3,5-DHS. Our data suggest that subtle changes in the structure of the RSV derivatives examined may be responsible for the different ERalpha-mediated biological responses observed in estrogen-sensitive cancer cells.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Estilbenos/farmacologia , Sítios de Ligação , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Resveratrol , Relação Estrutura-Atividade
18.
Mol Pharmacol ; 67(5): 1451-9, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15703378

RESUMO

Neovascularization plays an important role in neoplasia and angioproliferative diseases. Two major modalities have been developed so far to affect neovascularization: its prevention by antiangiogenic compounds, and immature vessel disruption by vascular-targeting agents. trans-Resveratrol, found in grapes and wine, exerts antioxidant, antineoplastic, and antiangiogenic activities. Here, among various synthetic trans-resveratrol derivatives tested, 3,5,4'-trimethoxystilbene was an antiangiogenic agent 30 to 100 times more potent than parent compound in inhibiting endothelial cell proliferation, sprouting, collagen gel invasion, and morphogenesis (ID50 = 0.3-3.0 microM). In addition, 3,5,4'-trimethoxystilbene acts as a vascular-targeting agent by causing microtubule disassembling and tubulin depolymerization and by impairing the repositioning of the microtubule organization center and the formation of membrane ruffles in migrating endothelial cells. In keeping with a vascular-targeting ability, 3,5,4'-trimethoxystilbene induced apoptosis only in subconfluent endothelial cells and apoptotic regression of immature vessels in the ex vivo rat aorta ring assay. In vivo, 3,5,4'-trimethoxystilbene caused the rapid stasis of blood flow and regression of intersegmental vessels in the trunk of zebrafish embryos. In addition, it inhibited blood vessel growth and caused the disappearance of pre-existing blood vessels in the area vasculosa of the chick embryo. In conclusion, 3,5,4'-trimethoxystilbene associates an antiangiogenic profile to a significant vascular-targeting activity.


Assuntos
Inibidores da Angiogênese/farmacologia , Microtúbulos/efeitos dos fármacos , Estilbenos/farmacologia , Inibidores da Angiogênese/química , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/fisiologia , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Galinhas , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/fisiologia , Ratos , Ratos Endogâmicos F344 , Resveratrol , Estilbenos/química , Peixe-Zebra
19.
Carcinogenesis ; 25(8): 1427-33, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15016660

RESUMO

To investigate the mechanistic basis for the biological properties of anthocyanins, two aglycone anthocyanins [delphinidin (DY) and cyanidin (CY)] were used to examine their effects on cell cycle progression and on induction of apoptosis in human cancer cells (uterine carcinoma and colon adenocarcinoma cells) and in normal human fibroblasts. These compounds differ in the number and position of hydroxyl groups on the beta ring in the molecular structure. Cellular uptake of anthocyanins was confirmed by HPLC analysis and no metabolites were detected. The clonogenic assay showed that CY induces a dose-dependent growth inhibitory effect only in fibroblasts. This effect was confirmed by flow cytometric analysis, showing a significant reduction of cells in S phase. In contrast, DP inhibited cell growth in normal and tumour cell lines. This event is accompanied in fibroblasts by an accumulation of cells in the S phase suggesting a block in the transition from S to G2 phase. On the other hand, in tumour cell lines we observed a reduction of cells in G1 phase, paralleled by the appearance of a fraction of cells with a hypodiploid DNA content, thus demonstrating an apoptotic effect by DP. The occurrence of apoptosis induced by DP was confirmed by morphological and biochemical features, including nuclear condensation and fragmentation, annexin V staining, DNA laddering and poly(ADP-ribose) polymerase-1-proteolysis. Furthermore, the mitochondrial membrane potential of apoptotic cells after treatment with DP was significantly lost. The different effects exerted by DP as compared with CY suggest that the presence of the three hydroxyl groups on the beta ring in the molecular structure of DP may be important for its greater biological activity.


Assuntos
Antocianinas/farmacologia , Apoptose , Anexina A5/farmacologia , Antocianinas/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Corantes/farmacologia , DNA/metabolismo , Fragmentação do DNA , Fibroblastos/metabolismo , Citometria de Fluxo , Fase G1 , Fase G2 , Células HeLa , Humanos , Potenciais da Membrana , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Propídio/farmacologia , Fase S , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa