Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(8): 4507-4520, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170306

RESUMO

The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5' and 3' untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ's interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ's NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Escherichia coli/genética , Técnicas Genéticas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
3.
Phys Rev Lett ; 123(2): 027601, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386497

RESUMO

Inelastic neutron scattering measurements on the molecular dimer-Mott insulator κ-(BEDT-TTF)_{2}Cu[N(CN)_{2}]Cl reveal a phonon anomaly in a wide temperature range. Starting from T_{ins}∼50-60 K where the charge gap opens, the low-lying optical phonon modes become overdamped upon cooling towards the antiferromagnetic ordering temperature T_{N}=27 K, where also a ferroelectric ordering at T_{FE}≈T_{N} occurs. Conversely, the phonon damping becomes small again when spins and charges are ordered below T_{N}, while no change of the lattice symmetry is observed across T_{N} in neutron diffraction measurements. We assign the phonon anomalies to structural fluctuations coupled to charge and spin degrees of freedom in the BEDT-TTF molecules.

4.
Nat Protoc ; 17(4): 941-961, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35197605

RESUMO

This protocol describes a bacterial three-hybrid (B3H) assay, an in vivo system that reports on RNA-protein interactions and can be implemented in both forward and reverse genetic experiments. The B3H assay connects the strength of an RNA-protein interaction inside of living Escherichia coli cells to the transcription of a reporter gene (here, lacZ). We present protocols to (1) insert RNA and protein sequences into appropriate vectors for B3H experiments, (2) detect putative RNA-protein interactions with both qualitative and quantitative readouts and (3) carry out forward genetic mutagenesis screens. The B3H assay builds on a well-established bacterial two-hybrid system for genetic analyses. As a result, protein-protein interactions can be assessed in tandem with RNA interactions with a bacterial two-hybrid assay to ensure that protein variants maintain their functionality. The B3H system is a powerful complement to traditional biochemical methods for dissecting RNA-protein interaction mechanisms: RNAs and proteins of interest do not need to be purified, and their interactions can be assessed under native conditions inside of a living bacterial cell. Once cloning has been completed, an assay can be completed in under a week and a screen in 1-2 weeks.


Assuntos
Escherichia coli , Genética Reversa , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Ligação Proteica , RNA/genética , RNA/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
Phys Rev Lett ; 106(24): 246401, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770582

RESUMO

We report on the magnetic excitation spectrum in the normal state of the heavy-fermion superconductor CeCu92)Si(2) on approaching the quantum critical point (QCP). The magnetic response in the superconducting state is characterized by a transfer of spectral weight to energies above a spin excitation gap. In the normal state, a slowing-down of the quasielastic magnetic response is observed, which conforms to the scaling expected for a QCP of spin-density-wave type. This interpretation is substantiated by an analysis of specific heat data and the momentum dependence of the magnetic excitation spectrum. Our study represents the first direct observation of an almost critical slowing-down of the normal state magnetic response at a QCP when suppressing superconductivity. The results strongly imply that the coupling of Cooper pairs in CeCu(2)Si(2) is mediated by overdamped spin fluctuations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa