Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 118(5): 1519-1532, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30937615

RESUMO

The freshwater pearl mussel (Margaritifera margaritifera) is an endangered bivalve with an obligate parasitic stage on salmonids. Host suitability studies have shown that glochidial growth and load vary significantly between host strains as well as among individuals of a suitable strain. Variation in host suitability has been linked to environmental conditions, host age and/or size, genetic composition of the host and parasite, or a combination of these factors. In our study, we wanted to investigate if brown trout (Salmo trutta) displayed an age-dependent response to glochidial infestation. We hypothesised that 1+ naive brown trout hosts tolerate glochidial infestation better than 0+ hosts. In order to test our hypothesis, we infested 0+ and 1+ hatchery reared brown trout with glochidia from closely related mothers and kept them under common garden conditions. This allowed us to observe a pure age dependent host response to infestation, as we eliminated the confounding effect of genotype-specific host interactions. We analysed the interaction between glochidial load and host condition, weight and length, and observed a significant age-dependent relationship. Glochidial load was negatively correlated to host condition in 0+ fish hosts and positively correlated in 1+ hosts. These contradictory findings can be explained by a change in host response strategy, from resistance in young to a higher tolerance in older fish. In addition, we also examined the relationship between glochidial load and haematocrit values in the 1+ hosts and observed that haematocrit values were significantly higher in heavily infested hosts. Our results have important conservation implications for the management of wild pearl mussel populations, as well as for captive breeding programmes.


Assuntos
Bivalves/crescimento & desenvolvimento , Bivalves/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Larva/crescimento & desenvolvimento , Truta/parasitologia , Fatores Etários , Animais , Água Doce
2.
Mol Ecol Resour ; 23(2): 396-409, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36151931

RESUMO

Environmental DNA (eDNA) metabarcoding is an effective method for studying fish communities but allows only an estimation of relative species abundance (density/biomass). Here, we combine metabarcoding with an estimation of the total abundance of eDNA amplified by our universal marker (teleo) using a quantitative (q)PCR approach to infer the absolute abundance of fish species. We carried out a 2850-km eDNA survey within the Danube catchment using a spatial integrative sampling protocol coupled with traditional electrofishing for fish biomass and density estimation. Total fish eDNA concentrations and total fish abundance were highly correlated. The correlation between eDNA concentrations per taxon and absolute specific abundance was of comparable strength when all sites were pooled and remained significant when the sites were considered separately. Furthermore, a nonlinear mixed model showed that species richness was underestimated when the amount of teleo-DNA extracted from a sample was below a threshold of 0.65 × 106 copies of eDNA. This result, combined with the decrease in teleo-DNA concentration by several orders of magnitude with river size, highlights the need to increase sampling effort in large rivers. Our results provide a comprehensive description of longitudinal changes in fish communities and underline our combined metabarcoding/qPCR approach for biomonitoring and bioassessment surveys when a rough estimate of absolute species abundance is sufficient.


Assuntos
DNA Ambiental , Animais , DNA Ambiental/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , DNA/genética , DNA/análise , Peixes/genética , Ecossistema
3.
Sci Rep ; 11(1): 16019, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362991

RESUMO

Securing genetic integrity is of key importance in conservation-oriented captive breeding programs releasing juveniles into the wild. This is particularly true for species such as the endangered freshwater pearl mussel (Margaritifera margaritifera) for which a number of captive breeding facilities has been established in Europe. The core objective of this study was to compare the genetic constitution of 29 cohorts of captive-bred freshwater pearl mussels from five different breeding facilities in Austria, France, Luxembourg and Germany, with their original 14 source populations from nine major European drainages, based on microsatellite markers. Captive-bred mussels represented 11 different genetic clusters, suggesting an important contribution of the breeding stations to securing the genetic diversity of the species. In almost all cases, the cultured offspring closely resembled the genetic constitution of the source mussels as revealed from the STRUCTURE analysis and the generally high assignment of offspring to the original source populations. The majority of captive-bred cohorts had an increased inbreeding coefficient and decreased genetic variability compared to their source populations as measured by AR and HO. Highest numbers of deformed juveniles coincided with very low levels of HO < 0.05. Since erosion of genetic diversity in captive breeding was mostly evident in individual year-cohorts, long-term breeding over multiple years can minimize such effects. The systematic selection of priority populations for conservation, effective breeding strategies avoiding effects of in- and outbreeding by genetically informed selection of parent individuals, and a network of collaboration among the different breeding facilities would be very useful to increase resilience and effectiveness.


Assuntos
Criação de Animais Domésticos/métodos , Bivalves/genética , Cruzamento , Variação Genética , Reprodução , Animais , Bivalves/fisiologia , Espécies em Perigo de Extinção , Água Doce , Repetições de Microssatélites
4.
PLoS One ; 13(10): e0206164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30346982

RESUMO

The proliferative darkening syndrome (PDS) is an annually recurring disease that causes species-specific die-off of brown trout (Salmo trutta fario) with a mortality rate of near 100% in pre-alpine rivers of central Europe. So far the etiology and causation of this disease is still unclear. The objective of this study was to identify the cause of PDS using a next-generation technology detection pipeline. Following the hypothesis that PDS is caused by an infectious agent, brown trout specimens were exposed to water from a heavily affected pre-alpine river with annual occurrence of the disease. Specimens were sampled over the entire time period from potential infection through death. Transcriptomic analysis (microarray) and RT-qPCR of brown trout liver tissue evidenced strong gene expression response of immune-associated genes. Messenger RNA of specimens with synchronous immune expression profiles were ultra-deep sequenced using next-generation sequencing technology (NGS). Bioinformatic processing of generated reads and gap-filling Sanger re-sequencing of the identified pathogen genome revealed strong evidence that a piscine-related reovirus is the causative organism of PDS. The identified pathogen is phylogenetically closely related to the family of piscine reoviruses (PRV) which are considered as the causation of different fish diseases in Atlantic and Pacific salmonid species such as Salmo salar and Onchorhynchus kisutch. This study also highlights that the approach of first screening immune responses along a timeline in order to identify synchronously affected stages in different specimens which subsequently were ultra-deep sequenced is an effective approach in pathogen detection. In particular, the identification of specimens with synchronous molecular immune response patterns combined with NGS sequencing and gap-filling re-sequencing resulted in the successful pathogen detection of PDS.


Assuntos
Doenças dos Peixes/virologia , Perfilação da Expressão Gênica/métodos , Orthoreovirus/isolamento & purificação , Análise de Sequência de RNA/métodos , Truta/imunologia , Animais , Europa (Continente) , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/imunologia , Fígado/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Orthoreovirus/genética , Filogenia , RNA Viral/análise , Especificidade da Espécie , Truta/genética , Truta/virologia
5.
PLoS One ; 12(12): e0189119, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29220394

RESUMO

The use of environmental DNA (eDNA) to determine the presence and distribution of aquatic organisms has become an important tool to monitor and investigate freshwater communities. The successful application of this method in the field, however, is dependent on the effectiveness of positive DNA verification, which is influenced by site-specific environmental parameters. Factors affecting eDNA concentrations in aquatic ecosystems include flow conditions, and the presence of substances that possess DNA-binding properties or inhibitory effects. In this study we investigated the influence of different environmental parameters on the detection success of eDNA using the invasive goby Neogobius melanostomus. In a standardized laboratory setup, different conditions of flow, sediment-properties, and fish density were compared, as well as different potential natural inhibitors such as algae, humic substances, and suspended sediment particles. The presence of sediment was mainly responsible for lower eDNA detection in the water samples, regardless of flow-through or standing water conditions and a delayed release of eDNA was detected in the presence of sediment. Humic substances had the highest inhibitory effect on eDNA detection followed by algae and siliceous sediment particles. The results of our study highlight that a successful application of eDNA methods in field surveys strongly depends on site-specific conditions, such as water flow conditions, sediment composition, and suspended particles. All these factors should be carefully considered when sampling, analyzing, and interpreting eDNA detection results.


Assuntos
DNA/genética , Ecossistema , Peixes/genética , Biologia de Sistemas , Animais
6.
Aquat Toxicol ; 170: 279-288, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26187809

RESUMO

Most freshwater mussel species of the Unionoida are endangered, presenting a conservation issue as they are keystone species providing essential services for aquatic ecosystems. As filter feeders with limited mobility, mussels are highly susceptible to water pollution. Despite their exposure risk, mussels are underrepresented in standard ecotoxicological methods. This study aimed to demonstrate that mussel behavioral response to a chemical stressor is a suitable biomarker for the advancement of ecotoxicology methods that aids mussel conservation. Modern software and Hall sensor technology enabled mussel filtration behavior to be monitored real-time at very high resolution. With this technology, we present our method using Anodonta anatina and record their response to de-icing salt pollution. The experiment involved an environmentally relevant 'pulse-exposure' design simulating three subsequent inflow events. Three sublethal endpoints were investigated, Filtration Activity, Transition Frequency (number of changes from opened to closed, or vice versa) and Avoidance Behavior. The mussels presented a high variation in filtration behavior, behaving asynchronously. At environmentally relevant de-icing salt exposure scenarios, A. anatina behavior patterns were significantly affected. Treated mussels' Filtration Activity decreased during periods of very high and long de-icing salt exposure (p<0.001), however, increased during short de-icing salt exposure. Treated mussels' Transition Frequency increased during periods of very high and long de-icing salt exposure (p<0.001), which mirrored the Avoidance Behavior endpoint observed only by mussels under chemical stress. Characteristics of Avoidance Behavior were tighter shell closures with repeated and irregular shell movements which was significantly different to their undisturbed resting behavior (p<0.001). Additionally, we found that mussels were sensitive to a chemical stressor even when the mussel's valves were closed. Due to the effects of de-icing salt pollution on freshwater mussel behavior, we suggest better management practices for de-icing salt use be implemented. Our experimental method demonstrated that, with the application of current technologies, mussel behavioral response to a chemical stressor can be measured. The tested sublethal endpoints are suitable for mussel ecotoxicology studies. Avoidance Behavior proved to be a potentially suitable endpoint for calculating mussel behavior effect concentration. Therefore we recommend adult mussel behavior as a suitable biomarker for future ecotoxicological research. This method could be applied to other bivalve species and for physical and environmental stressors, such as particulate matter and temperature.


Assuntos
Anodonta/fisiologia , Comportamento Animal , Biomarcadores/metabolismo , Ecotoxicologia , Análise de Variância , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Filtração , Reprodutibilidade dos Testes , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa