RESUMO
We examined more than 97,000 families from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents contributing to neurodevelopmental disease risk in children. We identified within- and cross-disorder correlations between six phenotypes in parents and children, such as obsessive-compulsive disorder (R = 0.32-0.38, p < 10-126). We also found that measures of sub-clinical autism features in parents are associated with several autism severity measures in children, including biparental mean Social Responsiveness Scale scores and proband Repetitive Behaviors Scale scores (regression coefficient = 0.14, p = 3.38 × 10-4). We further describe patterns of phenotypic similarity between spouses, where spouses show correlations for six neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R = 0.24-0.68, p < 0.001) and a cross-disorder correlation between anxiety and bipolar disorder (R = 0.09-0.22, p < 10-92). Using a simulated population, we also found that assortative mating can lead to increases in disease liability over generations and the appearance of "genetic anticipation" in families carrying rare variants. We identified several families in a neurodevelopmental disease cohort where the proband inherited multiple rare variants in disease-associated genes from each of their affected parents. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse relationship with variant pathogenicity and propose that parental relatedness modulates disease risk by increasing genome-wide homozygosity in children (R = 0.05-0.26, p < 0.05). Our results highlight the utility of assessing parent phenotypes and genotypes toward predicting features in children who carry rare variably expressive variants and implicate assortative mating as a risk factor for increased disease severity in these families.
Assuntos
Transtorno Autístico , Transtorno Bipolar , Criança , Humanos , Virulência , Pais , Família , Transtorno Autístico/genética , Transtorno Bipolar/genéticaRESUMO
Megacystis-microcolon-hypoperistalsis-syndrome (MMIHS) is a rare and early-onset congenital disease characterized by massive abdominal distension due to a large non-obstructive bladder, a microcolon and decreased or absent intestinal peristalsis. While in most cases inheritance is autosomal dominant and associated with heterozygous variant in ACTG2 gene, an autosomal recessive transmission has also been described including pathogenic bialellic loss-of-function variants in MYH11. We report here a novel family with visceral myopathy related to MYH11 gene, confirmed by whole genome sequencing (WGS). WGS was performed in two siblings with unusual presentation of MMIHS and their two healthy parents. The 38 years-old brother had severe bladder dysfunction and intestinal obstruction, whereas the 30 years-old sister suffered from end-stage kidney disease with neurogenic bladder and recurrent sigmoid volvulus. WGS was completed by retrospective digestive pathological analyses. Compound heterozygous variants of MYH11 gene were identified, associating a deletion of 1.2 Mb encompassing MYH11 inherited from the father and an in-frame variant c.2578_2580del, p.Glu860del inherited from the mother. Pathology analyses of the colon and the rectum revealed structural changes which significance of which is discussed. Cardiac and vascular assessment of the mother was normal. This is the second report of a visceral myopathy corresponding to late-onset form of MMIHS related to compound heterozygosity in MYH11; with complete gene deletion and a hypomorphic allele in trans. The hypomorphic allele harbored by the mother raised the question of the risk of aortic disease in adults. This case shows the interest of WGS in deciphering complex phenotypes, allowing adapted diagnosis and genetic counselling.
Assuntos
Anormalidades Múltiplas , Colo , Duodeno , Doenças Fetais , Obstrução Intestinal , Pseudo-Obstrução Intestinal , Bexiga Urinária , Adulto , Humanos , Masculino , Colo/anormalidades , Duodeno/anormalidades , Pseudo-Obstrução Intestinal/genética , Cadeias Pesadas de Miosina/genética , Estudos Retrospectivos , Bexiga Urinária/anormalidades , FemininoRESUMO
Plasma membrane calcium ATPases (PMCAs) encoded by ATP2B genes have been implicated in Mendelian diseases with ataxia, dystonia, and intellectual disability. Work to date has shown that ATP2B2 (encoding PMCA2) is required for synaptic function and Purkinje-cell integrity in the cerebellum. A recent case series has linked ATP2B2 to a novel entity, characterized by neurodevelopmental and movement phenotypes, in only seven individuals. We called for collaboration to collect five unpublished families affected by the new rare ATP2B2-related condition. Exome-/genome sequencing-identified genotypes included four likely pathogenic/pathogenic heterozygous de novo missense variants and one dominantly inherited end-truncating frameshift allele. The six affected individuals shared features with the described patients including developmental delay, cognitive disturbances, epilepsy, autistic traits, and motor disorders. Striking cerebellar atrophy was observed in one affected individual. In association with hearing loss and movement abnormalities, we report a recurrent p.(Glu457Lys) substitution, previously documented in a neurologically impaired ATP2B2 mouse mutant. Our study further delineates the mutational spectrum and presentation of a human syndrome caused by ATP2B2 variants, confirming the importance of PMCA2 in neurotypical and cerebellar development.
RESUMO
BACKGROUND: Arthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families. METHODS: Several genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants. RESULTS: We achieved disease gene identification in 52.7% of AMC index patients including nine recently identified genes (CNTNAP1, MAGEL2, ADGRG6, ADCY6, GLDN, LGI4, LMOD3, UNC50 and SCN1A). Moreover, we identified pathogenic variants in ASXL3 and STAC3 expanding the phenotypes associated with these genes. The most frequent cause of AMC was a primary involvement of skeletal muscle (40%) followed by brain (22%). The most frequent mode of inheritance is autosomal recessive (66.3% of patients). In sporadic patients born to non-consanguineous parents (n=60), de novo dominant autosomal or X linked variants were observed in 30 of them (50%). CONCLUSION: New genes recently identified in AMC represent 21% of causing genes in our cohort. A high proportion of de novo variants were observed indicating that this mechanism plays a prominent part in this developmental disease. Our data showed the added value of WES when compared with TES due to the larger clinical spectrum of some disease genes than initially described and the identification of novel genes.
Assuntos
Artrogripose , Artrogripose/diagnóstico , Artrogripose/genética , Artrogripose/patologia , Genômica , Humanos , Linhagem , Fenótipo , Proteínas/genética , Fatores de Transcrição/genética , Sequenciamento do ExomaRESUMO
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into the Y chromosome generates an extended PAR [corrected].The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.
Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Evolução Molecular , Animais , Cromossomos/genética , Haplótipos , Hominidae/genética , Recombinação Homóloga/genética , Humanos , Polimorfismo Genético , Sequências Repetitivas de Ácido Nucleico/genética , Translocação GenéticaRESUMO
Biallelic loss-of-function variants in TBC1D2B have been reported in five subjects with cognitive impairment and seizures with or without gingival overgrowth. TBC1D2B belongs to the family of Tre2-Bub2-Cdc16 (TBC)-domain containing RAB-specific GTPase activating proteins (TBC/RABGAPs). Here, we report five new subjects with biallelic TBC1D2B variants, including two siblings, and delineate the molecular and clinical features in the ten subjects known to date. One of the newly reported subjects was compound heterozygous for the TBC1D2B variants c.2584C>T; p.(Arg862Cys) and c.2758C>T; p.(Arg920*). In subject-derived fibroblasts, TBC1D2B mRNA level was similar to control cells, while the TBC1D2B protein amount was reduced by about half. In one of two siblings with a novel c.360+1G>T splice site variant, TBC1D2B transcript analysis revealed aberrantly spliced mRNAs and a drastically reduced TBC1D2B mRNA level in leukocytes. The molecular spectrum included 12 different TBC1D2B variants: seven nonsense, three frameshifts, one splice site, and one missense variant. Out of ten subjects, three had fibrous dysplasia of the mandible, two of which were diagnosed as cherubism. Most subjects developed gingival overgrowth. Half of the subjects had developmental delay. Seizures occurred in 80% of the subjects. Six subjects showed a progressive disease with mental deterioration. Brain imaging revealed cerebral and/or cerebellar atrophy with or without lateral ventricle dilatation. The TBC1D2B disorder is a progressive neurological disease with gingival overgrowth and abnormal mandible morphology. As TBC1D2B has been shown to positively regulate autophagy, defects in autophagy and the endolysosomal system could be associated with neuronal dysfunction and the neurodegenerative disease in the affected individuals.
Assuntos
Proteínas Ativadoras de GTPase , Crescimento Excessivo da Gengiva , Adulto , Feminino , Humanos , Crescimento Excessivo da Gengiva/genética , Crescimento Excessivo da Gengiva/patologia , Proteínas Ativadoras de GTPase/genética , Mutação com Perda de Função , Linhagem , Convulsões/genética , Convulsões/patologiaRESUMO
Oculo-auriculo-vertebral spectrum (OAVS) is characterized by abnormal development of the 1st and 2nd branchial arches. Despite arguments against a monogenic condition, a few genes have been involved in a minority of cases. We now report heterozygous, presumably loss-of function variants in the CHAF1A gene in 8 individuals, including 3 members of the same family. Four cases fulfill stringent diagnostic criteria for OAVS, including asymmetric ear dysplasia, preauricular tags, mandibular asymmetry +/- vertebral malformations. Two patients also presented with kidney malformations. CHAF1A encodes a subunit of CAF-1 (chromatin assembly factor-1), a heterotrimeric protein complex responsible for the deposition of newly synthesized histones H3-H4 onto the newly synthetized DNA strand during replication. The identification of loss-of-unction variants in CHAF1A is consistent with the hypothesis of early developmental genes dysregulation driving OAVS and other associations recently lumped under the acronym Recurrent Constellations of Embryonic Malformations (RCEM).
RESUMO
We examined more than 38,000 spouse pairs from four neurodevelopmental disease cohorts and the UK Biobank to identify phenotypic and genetic patterns in parents associated with neurodevelopmental disease risk in children. We identified correlations between six phenotypes in parents and children, including correlations of clinical diagnoses such as obsessive-compulsive disorder (R=0.31-0.49, p<0.001), and two measures of sub-clinical autism features in parents affecting several autism severity measures in children, such as bi-parental mean Social Responsiveness Scale (SRS) scores affecting proband SRS scores (regression coefficient=0.11, p=0.003). We further describe patterns of phenotypic and genetic similarity between spouses, where spouses show both within- and cross-disorder correlations for seven neurological and psychiatric phenotypes, including a within-disorder correlation for depression (R=0.25-0.72, p<0.001) and a cross-disorder correlation between schizophrenia and personality disorder (R=0.20-0.57, p<0.001). Further, these spouses with similar phenotypes were significantly correlated for rare variant burden (R=0.07-0.57, p<0.0001). We propose that assortative mating on these features may drive the increases in genetic risk over generations and the appearance of "genetic anticipation" associated with many variably expressive variants. We further identified parental relatedness as a risk factor for neurodevelopmental disorders through its inverse correlations with burden and pathogenicity of rare variants and propose that parental relatedness drives disease risk by increasing genome-wide homozygosity in children (R=0.09-0.30, p<0.001). Our results highlight the utility of assessing parent phenotypes and genotypes in predicting features in children carrying variably expressive variants and counseling families carrying these variants.
RESUMO
Complete deletion of the NF1 gene is identified in 5-10% of patients with neurofibromatosis type 1 (NF1). Several studies have previously described particularly severe forms of the disease in NF1 patients with deletion of the NF1 locus, but comprehensive descriptions of large cohorts are still missing to fully characterize this contiguous gene syndrome. NF1-deleted patients were enrolled and phenotypically characterized with a standardized questionnaire between 2005 and 2020 from a large French NF1 cohort. Statistical analyses for main NF1-associated symptoms were performed versus an NF1 reference population. A deletion of the NF1 gene was detected in 4% (139/3479) of molecularly confirmed NF1 index cases. The median age of the group at clinical investigations was 21 years old. A comprehensive clinical assessment showed that 93% (116/126) of NF1-deleted patients fulfilled the NIH criteria for NF1. More than half had café-au-lait spots, skinfold freckling, Lisch nodules, neurofibromas, neurological abnormalities, and cognitive impairment or learning disabilities. Comparison with previously described "classic" NF1 cohorts showed a significantly higher proportion of symptomatic spinal neurofibromas, dysmorphism, learning disabilities, malignancies, and skeletal and cardiovascular abnormalities in the NF1-deleted group. We described the largest NF1-deleted cohort to date and clarified the more severe phenotype observed in these patients.
RESUMO
Partial deletions of the long arm of chromosome 13 lead to variable phenotypes dependant on the size and position of the deleted region. In order to update the phenotypic map of chromosome 13q21.1-qter deletions, we applied 244k Agilent oligonucleotide-based array-CGH to determine the exact breakpoints in 14 patients with partial deletions of this region. Subsequently, we linked the genotype to the patient's phenotype. Using this approach, we were able to refine the smallest deletion region linked to short stature (13q31.3: 89.5-91.6 Mb), microcephaly (13q33.3-q34), cortical development malformations (13q33.1-qter), Dandy-Walker malformation (DWM) (13q32.2-q33.1), corpus callosum agenesis (CCA) (13q32.3-q33.1), meningocele/encephalocele (13q31.3-qter), DWM, CCA, and neural tube defects (NTDs) taken together (13q32.3-q33.1), ano-/microphthalmia (13q31.3-13qter), cleft lip/palate (13q31.3-13q33.1), lung hypoplasia (13q31.3-13q33.1), and thumb a-/hypoplasia (13q31.3-q33.1 and 13q33.3-q34). Based on observations of this study and previous reports we suggest a new entity, "distal limb anomalies association," linked to 13q31.3q33.1 segment. Most of the individuals with deletion of any part of 13q21qter showed surprisingly similar facial dysmorphic features, and thus, a "13q deletion facial appearance" was suggested. Prominent nasal columella was mapped between 13q31.3 and 13q33.3, and micrognathia between 13q21.33 and 13q31.1. The degree of mental delay did not display a particular phenotype-genotype correlation on chromosome 13. In contrast to previous reports of carriers of 13q32 band deletions as the most seriously affected patients, we present two such individuals with long-term survival, 28 and 2.5 years.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 13/genética , Anormalidades Congênitas/genética , Anormalidades Congênitas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Anormalidades Congênitas/classificação , Feminino , Humanos , Lactente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Adulto JovemRESUMO
UNLABELLED: Cryptic chromosome aberrations are a common cause of idiopathic mental retardation and multiple congenital malformations syndromes (MR/MCM). MATERIAL AND METHODS: This study describes results and compares three methods for detection of submicroscopic chromosome aberrations in 76 children with MR/MCM and normal routine G-banded karyotype. RESULTS: Cryptic chromosome aberrations were detected in 15 patients (19.7%): in 3 of 19 patients (15.8%) by subtelomeric fluorescent in situ hybridization (FISH), in 5 of 47 patients (10.6%) by Multiplex Ligation Dependent Probe Amplification (MLPA) and in 7 of 23 patients (30.4%) by array-Comparative Genome Hybridization (array-CGH). Seven deletions, four duplications and four complex rearrangements have been diagnosed in the present study. Six were de novo and 2 were inherited from a parent carrier of balanced translocation. DISCUSSION: We observed a slightly higher imbalance incidence compared to the literature. Among these aberrations there were well known syndromes as well as some rare variants. CONCLUSION: This study confirms the utility of molecular-cytogenetic screening in patients with MR/MCM. We suggest array-CGH as the most reliable technique with a high diagnostic yield.