Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genet Med ; 20(1): 14-23, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28640243

RESUMO

PurposeWith improved medical care, some individuals with holoprosencephaly (HPE) are surviving into adulthood. We investigated the clinical manifestations of adolescents and adults with HPE and explored the underlying molecular causes.MethodsParticipants included 20 subjects 15 years of age and older. Clinical assessments included dysmorphology exams, cognitive testing, swallowing studies, ophthalmic examination, and brain magnetic resonance imaging. Genetic testing included chromosomal microarray, Sanger sequencing for SHH, ZIC2, SIX3, and TGIF, and whole-exome sequencing (WES) of 10 trios.ResultsSemilobar HPE was the most common subtype of HPE, seen in 50% of the participants. Neurodevelopmental disabilities were found to correlate with HPE subtype. Factors associated with long-term survival included HPE subtype not alobar, female gender, and nontypical facial features. Four participants had de novo pathogenic variants in ZIC2. WES analysis of 11 participants did not reveal plausible candidate genes, suggesting complex inheritance in these cases. Indeed, in two probands there was a history of uncontrolled maternal type 1 diabetes.ConclusionIndividuals with various HPE subtypes can survive into adulthood and the neurodevelopmental outcomes are variable. Based on the facial characteristics and molecular evaluations, we suggest that classic genetic causes of HPE may play a smaller role in this cohort.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Adolescente , Adulto , Fácies , Feminino , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fenótipo , Sistema de Registros , Adulto Jovem
2.
Birth Defects Res ; 112(16): 1194-1208, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32431076

RESUMO

BACKGROUND: Vitamin A regulates patterning of the pharyngeal arches, cranial nerves, and hindbrain that are essential for feeding and swallowing. In the LgDel mouse model of 22q11.2 deletion syndrome (22q11DS), morphogenesis of multiple structures involved in feeding and swallowing are dysmorphic. We asked whether changes in maternal dietary Vitamin A intake can modify cranial nerve, hindbrain and pharyngeal arch artery development in the embryo as well as lung pathology that can be a sign of aspiration dysphagia in LgDel pups. METHODS: Three defined amounts of vitamin A (4, 10, and 16 IU/g) were provided in the maternal diet. Cranial nerve, hindbrain and pharyngeal arch artery development was evaluated in embryos and inflammation in the lungs of pups to determine the impact of altering maternal diet on these phenotypes. RESULTS: Reduced maternal vitamin A intake improved whereas increased intake exacerbated lung inflammation in LgDel pups. These changes were accompanied by increased incidence and/or severity of pharyngeal arch artery and cranial nerve V (CN V) abnormalities in LgDel embryos as well as altered expression of Cyp26b1 in the hindbrain. CONCLUSIONS: Our studies demonstrate that variations in maternal vitamin A intake can influence the incidence and severity of phenotypes in a mouse model 22q11.2 deletion syndrome.


Assuntos
Síndrome de DiGeorge , Animais , Deglutição , Modelos Animais de Doenças , Camundongos , Fenótipo , Vitamina A
3.
Congenit Anom (Kyoto) ; 58(1): 29-32, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28670735

RESUMO

Holoprosencephaly (HPE) is failure of the forebrain to divide completely during embryogenesis. Incomplete penetrance has not been reported previously in SIX3 whole gene deletions, which are known to cause HPE. Both chromosomal microarray and whole exome sequencing (WES) were used to evaluate families with inherited HPE. Two families showed inherited deletions that contain SIX3 and were incompletely penetrant for HPE. Using WES, we ruled out parental mosaicism, a SIX3 hypomorph, and clinically significant variants in genes that are known to interact with SIX3 as causes of incomplete penetrance. We demonstrate the importance of molecular cascade testing in families with HPE and we answer important questions about incomplete penetrance.


Assuntos
Proteínas do Olho/genética , Deleção de Genes , Holoprosencefalia/genética , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Prosencéfalo/anormalidades , Adulto , Pré-Escolar , Expressão Gênica , Holoprosencefalia/diagnóstico , Holoprosencefalia/metabolismo , Holoprosencefalia/patologia , Humanos , Lactente , Recém-Nascido , Análise em Microsséries , Proteínas do Tecido Nervoso/deficiência , Penetrância , Prosencéfalo/metabolismo , Sequenciamento do Exoma , Proteína Homeobox SIX3
4.
Birth Defects Res ; 109(1): 16-26, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27883261

RESUMO

BACKGROUND: Neural tube defects (NTDs) are among the most common structural birth defects in humans and are caused by the complex interaction of genetic and environmental factors. Periconceptional supplementation with folic acid can prevent NTDs in both mouse models and human populations. A better understanding of how genes and environmental factors interact is critical toward development of rational strategies to prevent NTDs. Low density lipoprotein-related protein 2 (Lrp2) is involved in endocytosis of the folic acid receptor among numerous other nutrients and ligands. METHODS: We determined the effect of iron and/or folic acid supplementation on the penetrance of NTDs in the Lrp2null mouse model. The effects of supplementation on folate and iron status were measured in embryos and dams. RESULTS: Periconceptional dietary supplementation with folic acid did not prevent NTDs in Lrp2 mutant embryos, whereas high levels of folic acid supplementation by intraperitoneal injection reduced incidence of NTDs. Importantly, Lrp2null/+ dams had reduced blood folate levels that improved with daily intraperitoneal injections of folate but not dietary supplementation. On the contrary, iron supplementation had no effect on the penetrance of NTDs in Lrp2 mutant embryos and negated the preventative effect of folic acid supplementation in Lrp2null/null mutants. CONCLUSION: Lrp2 is required for folate homeostasis in heterozygous dams and high levels of supplementation prevents NTDs. Furthermore, high levels of dietary iron supplementation interfered with folic acid supplementation negating the positive effects of supplementation in this model. Birth Defects Research 109:16-26, 2017. © 2016 The Authors Birth Defects Published by Wiley Periodicals, Inc.


Assuntos
Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/prevenção & controle , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Deficiência de Ácido Fólico/complicações , Ferro/metabolismo , Proteínas Relacionadas a Receptor de LDL , Lipoproteínas , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética
5.
Birth Defects Res ; 109(2): 81-91, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28008752

RESUMO

BACKGROUND: Periconception maternal nutrition and folate in particular are important factors influencing the incidence of neural tube defects (NTDs). Many but not all NTDs are prevented by folic acid supplementation and there is a pressing need for additional strategies to prevent these birth defects. Other micronutrients such as iron are potential candidates, yet a clear role for iron deficiency in contributing to NTDs is lacking. Our previous studies with the flatiron (ffe) mouse model of Ferroportin1 (Fpn1) deficiency suggest that iron is required for neural tube closure and forebrain development raising the possibility that iron supplementation could prevent NTDs. METHODS: We determined the effect of periconception iron and/or folic acid supplementation on the penetrance of NTDs in the Fpn1ffe mouse model. Concurrently, measurements of folate and iron were made to ensure supplementation had the intended effects. RESULTS: High levels of iron supplementation significantly reduced the incidence of NTDs in Fpn1ffe mutants. Fpn1 deficiency resulted in reduced folate levels in both pregnant dams and embryos. Yet folic acid supplementation did not prevent NTDs in the Fpn1ffe model. Similarly, forebrain truncations were rescued with iron. Surprisingly, the high levels of iron supplementation used in this study caused folate deficiency in wild-type dams and embryos. CONCLUSION: Our results demonstrate that iron supplementation can prevent NTDs and forebrain truncations in the Fpn1ffe model. Surprisingly, high levels of iron supplementation and iron overload can cause folate deficiency. If iron is essential for neural tube closure, it is possible that iron deficiency might contribute to NTDs. Birth Defects Research 109:81-91, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte de Cátions/genética , Suplementos Nutricionais , Deficiência de Ácido Fólico/dietoterapia , Ácido Fólico/administração & dosagem , Ferro/administração & dosagem , Defeitos do Tubo Neural/prevenção & controle , Animais , Proteínas de Transporte de Cátions/deficiência , Cruzamentos Genéticos , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/patologia , Deleção de Genes , Humanos , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Transgênicos , Tubo Neural/anormalidades , Tubo Neural/efeitos dos fármacos , Tubo Neural/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Penetrância , Gravidez , Prosencéfalo/anormalidades , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo
6.
Front Microbiol ; 6: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674081

RESUMO

In response to bacterial and fungal infections in insects and mammals, distinct families of innate immune pattern recognition receptors (PRRs) initiate highly complex intracellular signaling cascades. Those cascades induce a variety of immune functions that restrain the spread of microbes in the host. Insect and mammalian innate immune receptors include molecules that recognize conserved microbial molecular patterns. Innate immune recognition leads to the recruitment of adaptor molecules forming multi-protein complexes that include kinases, transcription factors, and other regulatory molecules. Innate immune signaling cascades induce the expression of genes encoding antimicrobial peptides and other key factors that mount and regulate the immune response against microbial challenge. In this review, we summarize our current understanding of the bacterial and fungal PRRs for homologous innate signaling pathways of insects and mammals in an effort to provide a framework for future studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa