Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
J Allergy Clin Immunol ; 153(3): 684-694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995855

RESUMO

BACKGROUND: Risk factors of asthma-like symptoms in childhood may act through an increased infection burden because infections often trigger these symptoms. OBJECTIVE: We sought to investigate whether the effect of established risk factors of asthma-like episodes in early childhood is mediated through burden and subtypes of common infections. METHODS: The study included 662 children from the Copenhagen Prospective Studies on Asthma in Childhood 2010 mother-child cohort, in which infections were registered prospectively in daily diaries from age 0 to 3 years. The association between established risk factors of asthma-like episodes and infection burden was analyzed by quasi-Poisson regressions, and mediation analyses were performed for significant risk factors. RESULTS: In the first 3 years of life, the children experienced a median of 16 (interquartile range, 12-23) infectious episodes. We found that the infection burden significantly (PACME < .05) mediated the association of maternal asthma (36.6% mediated), antibiotics during pregnancy (47.3%), siblings at birth (57.7%), an asthma exacerbation polygenic risk score (30.6%), and a bacterial airway immune score (80.2%) with number of asthma-like episodes, whereas the higher number of episodes from male sex, low birth weight, low gestational age, and maternal antibiotic use after birth was not mediated through an increased infection burden. Subtypes of infections driving the mediation were primarily colds, pneumonia, gastroenteritis, and fever, but not acute otitis media or acute tonsillitis. CONCLUSIONS: Several risk factors of asthma-like symptoms in early childhood act through an increased infection burden in the first 3 years of life. Prevention of infectious episodes may therefore be beneficial to reduce the burden of asthma-like symptoms in early childhood.


Assuntos
Asma , Pneumonia , Recém-Nascido , Feminino , Gravidez , Humanos , Masculino , Pré-Escolar , Lactente , Estudos Prospectivos , Asma/etiologia , Fatores de Risco , Antibacterianos/uso terapêutico , Pneumonia/tratamento farmacológico , Sons Respiratórios
2.
Artigo em Inglês | MEDLINE | ID: mdl-38825025

RESUMO

BACKGROUND: Eicosanoids are lipid mediators including thromboxanes (TXs), prostaglandins (PGs), and leukotrienes with a pathophysiological role in established atopic disease. However, their role in the inception of disease is unclear. This study aimed to investigate the association between urinary eicosanoids in early life and development of atopic disease. METHODS: This study quantified the levels of 21 eicosanoids in urine from children from the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood 2010) (age 1 year, n = 450) and VDAART (Vitamin D Antenatal Asthma Reduction Trial) (age 3 years, n = 575) mother-child cohorts and analyzed the associations with development of wheeze/asthma, atopic dermatitis, and biomarkers of type-2 inflammation, applying false discovery rate of 5% (FDR5%) multiple testing correction. RESULTS: In both cohorts, analyses adjusted for environmental determinants showed that higher TXA2 eicosanoids in early life were associated with increased risk of developing atopic dermatitis (P < FDR5%) and type-2 inflammation (P < .05). In VDAART, lower PGE2 and PGI2 eicosanoids and higher isoprostanes were also associated with increased risk of atopic dermatitis (P < FDR5%). For wheeze/asthma, analyses in COPSAC2010 showed that lower isoprostanes and PGF2 eicosanoids and higher PGD2 eicosanoids at age 1 year associated with an increased risk at age 1-10 years (P < .05), whereas analyses in VDAART showed that lower PGE2 and higher TXA2 eicosanoids at age 3 years associated with an increased risk at 6 years (P < FDR5%). CONCLUSIONS: This study suggests that early life perturbations in the eicosanoid metabolism are present before the onset of atopic disease in childhood, which provides pathophysiological insight in the inception of atopic diseases.

3.
Thorax ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39117420

RESUMO

BACKGROUND: Infections in childhood remain a leading global cause of child mortality and environmental exposures seem crucial. We investigated whether urbanicity at birth was associated with the risk of infections and explored underlying mechanisms. METHODS: Children (n=633) from the COPSAC2010 mother-child cohort were monitored daily with symptom diaries of infection episodes during the first 3 years and prospectively diagnosed with asthma until age 6 years. Rural and urban environments were based on the CORINE land cover database. Child airway immune profile was measured at age 4 weeks. Maternal and child metabolomics profiling were assessed at pregnancy week 24 and at birth, respectively. RESULTS: We observed a mean (SD) total number of infections of 16.3 (8.4) consisting mainly of upper respiratory infections until age 3 years. Urban versus rural living increased infection risk (17.1 (8.7) vs 15.2 (7.9), adjusted incidence rate ratio; 1.15 (1.05-1.26), p=0.002) and altered the child airway immune profile, which increased infection risk (principal component 1 (PC1): 1.03 (1.00-1.06), p=0.038 and PC2: 1.04 (1.01-1.07), p=0.022). Urban living also altered the maternal and child metabolomic profiles, which also increased infection risk. The association between urbanicity and infection risk was partly mediated through the maternal metabolomic and child airway immune profiles. Finally, urbanicity increased the risk of asthma by age 6 years, which was mediated through early infection load (pACME<0.001). CONCLUSION: This study suggests urbanicity as an independent risk factor for early infections partly explained by changes in the early metabolic and immunological development with implications for later risk of asthma.

4.
Eur Respir J ; 63(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097209

RESUMO

BACKGROUND: We previously showed an association between neonatal bacterial airway colonisation and increased risk of persistent wheeze/asthma until age 5 years. Here, we study the association with persistent wheeze/asthma and allergy-related traits until age 18 years. METHODS: We investigated the association between airway colonisation with Streptococcus pneumoniae, Moraxella catarrhalis and/or Haemophilus influenzae in 1-month-old neonates from the COPSAC2000 mother-child cohort and the development of persistent wheeze/asthma and allergy-related traits longitudinally until age 18 years using generalised estimating equations. Replication was sought in the similarly designed COPSAC2010 cohort of 700 children. RESULTS: Neonatal airway colonisation was present in 66 (21%) out of 319 children and was associated with a 4-fold increased risk of persistent wheeze/asthma (adjusted OR 4.01 (95% CI 1.76-9.12); p<0.001) until age 7 years, but not from age 7 to 18 years. Replication in the COPSAC2010 cohort showed similar results using 16S data. Colonisation was associated with an increased number of exacerbations (adjusted incidence rate ratio 3.20 (95% CI 1.38-7.44); p<0.01) until age 7 years, but not from age 7 to 18 years. Colonisation was associated with increased levels of blood eosinophils (adjusted geometric mean ratio 1.24 (95% CI 1.06-1.44); p<0.01) and tumour necrosis factor (TNF)-α (adjusted geometric mean ratio 1.09 (95% CI 1.02-1.16); p=0.01) until age 12 years. There were no associations with lung function, bronchial reactivity, fractional exhaled nitric oxide, allergic sensitisation, total IgE or atopic dermatitis up to age 18 years. CONCLUSIONS: Neonatal airway colonisation was associated with early-onset persistent wheeze/asthma, exacerbations, elevated blood eosinophils and elevated TNF-α in blood, most prominent in early childhood, thereafter diminishing and no longer evident by age 18 years.


Assuntos
Asma , Dermatite Atópica , Hipersensibilidade , Recém-Nascido , Humanos , Pré-Escolar , Adolescente , Criança , Lactente , Asma/etiologia , Hipersensibilidade/complicações , Sistema Respiratório , Dermatite Atópica/complicações , Streptococcus pneumoniae , Sons Respiratórios/etiologia
5.
Eur Respir J ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38811044

RESUMO

BACKGROUND: High BMI is an established risk factor for asthma, but the underlying mechanisms remain unclear.Objective: To increase understanding of the BMI-asthma relationship by studying the association between genetic predisposition to higher body mass index (BMI) and asthma, infections, and other asthma-traits during childhood. METHODS: Data was obtained from the two ongoing COPSAC mother-child cohorts. Polygenic risk score (PRS) for adult BMI were calculated for each child. Replication was done in the large-scale iPSYCH cohort using data on hospitalization for asthma and infections. RESULTS: In the COPSAC cohorts (n=974), the adult BMI PRS was significantly associated with lower respiratory tract infections (LRTI) (IRR 1.20 95% CI 1.08-1.33, FDR=0.005) age 0-3 years and episodes of severe wheeze (IRR 1.30, 1.06-1.60, FDR=0.04) age 0-6 years. LRTI partly mediated the association between the adult BMI PRS and severe wheeze (proportion mediated: 0.59, 0.28-2.24, pACME 2E-16). In contrast, these associations were not mediated through the child's current BMI and the PRS was not associated with an asthma diagnosis or reduced lung function up to age 18. The associations were replicated in iPSYCH (n=114 283), where the adult BMI PRS significantly increased the risk of hospitalizations for LRTI and wheeze or asthma during childhood to age 18 years. CONCLUSION: Children with genetic predisposition to higher BMI had increased risk of LRTI and severe wheeze, independent of the child's current BMI. These results shed further light on the complex relationship between BMI and asthma.

6.
Allergy ; 79(2): 404-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014461

RESUMO

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Assuntos
Asma , Esfingolipídeos , Criança , Humanos , Esfingolipídeos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ceramidas/metabolismo , Asma/etiologia , Asma/genética , Fatores de Risco
7.
Brain Behav Immun ; 115: 450-457, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914103

RESUMO

INTRODUCTION: Maternal inflammation during pregnancy may affect early neurodevelopment in offspring as suggested by preclinical and register data. However, clinical evidence for risk of aberrant neurodevelopment later in childhood is scarce. In the population-based COPSAC2010 mother-child cohort, we investigated associations between maternal inflammation levels during pregnancy and the risk of a diagnosis of ADHD as well as the load of ADHD symptoms in the children at age 10. METHODS: The COPSAC2010 cohort consists of 700 mother-child pairs followed prospectively since pregnancy week 24.Maternal high-sensitivity C-Reactive Protein (hs-CRP) level at week 24 of gestation was investigated in relation to child neurodevelopment by age 10 using logistic and linear regression models with extensive confounder adjustment, including socioeconomic status and maternal polygenic risk of ADHD. The children completed a comprehensive examination of neurodevelopment including categorical (i.e., diagnostic) and dimensional (i.e., symptom load) psychopathology using the Kiddie Schedule for Affective Disorders and Schizophrenia Present and Lifetime Version (K-SADS-PL) and parental rated ADHD-Rating Scale (ADHD-RS). RESULTS: A total of 604 (86 %) of the 700 children in the COPSAC2010 cohort participated in the COPSYCH visit at age 10. Sixty-five (10.8 %) fulfilled a research diagnosis of ADHD (16 girls and 49 boys). Higher maternal hs-CRP level in pregnancy at week 24 (median 5.4 mg/L) was significantly associated with increased risk for a diagnosis of ADHD, adjusted OR 1.40, 95 %CI (1.16-1.70), p = 0.001. Additionally, higher maternal hs-CRP was associated with increased ADHD symptom load in the entire cohort, reflected by ADHD-RS raw scores. DISCUSSION: These clinical data demonstrated a robust association of prenatal maternal inflammation assessed by hs-CRP with a diagnosis of ADHD by age 10. Moreover, maternal inflammation was associated with ADHD symptom load in the complete cohort. Identifying inflammation as an important marker will provide a potential target for future increased awareness and prevention during pregnancy thereby ultimately improving neurodevelopmental outcomes in children.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Efeitos Tardios da Exposição Pré-Natal , Masculino , Feminino , Gravidez , Humanos , Criança , Proteína C-Reativa , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Efeitos Tardios da Exposição Pré-Natal/psicologia , Inflamação/complicações , Pais
8.
Pediatr Allergy Immunol ; 35(6): e14184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924159

RESUMO

Asthma is the most common chronic disease in childhood affecting the daily lives of many patients despite current treatment regimens. Therefore, the need for new therapeutic approaches is evident, where a primary prevention strategy is the ultimate goal. Studies of children born to mothers in farming environments have shown a lower risk of respiratory infections and asthma development. Already at birth, these newborns have demonstrated accelerated maturation and upregulation of host defense immune functions suggesting a prenatal transplacental training of the innate immune system through maternal microbial exposure. This mechanism could possibly be utilized to help prevent both respiratory infections and asthma in young children. Human studies exploring the potential preventative effects of pregnancy bacterial lysate treatment on asthma and respiratory infections are lacking, however, this has been studied in experimental studies using mice through administrations of the bacterial lysate OM-85. This review will present the current literature on the immunomodulatory effects relevant for respiratory infections and asthma in the offspring of mice treated with OM-85 throughout pregnancy. Further, the review will discuss the cellular and molecular mechanisms behind these effects. In conclusion, we found promising results of an accelerated immune competence and improved resistance to airway challenges as a result of prenatal bacterial lysate treatment that may pave the way for implementing this in human trials to prevent asthma and respiratory infections.


Assuntos
Asma , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Infecções Respiratórias , Animais , Asma/prevenção & controle , Asma/imunologia , Gravidez , Feminino , Humanos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/imunologia , Camundongos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Extratos Celulares/uso terapêutico , Lisados Bacterianos
9.
Am J Respir Crit Care Med ; 208(2): 142-154, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163754

RESUMO

Rationale: Children with preschool wheezing or school-age asthma are reported to have airway microbial imbalances. Objectives: To identify clusters in children with asthma or wheezing using oropharyngeal microbiota profiles. Methods: Oropharyngeal swabs from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) pediatric asthma or wheezing cohort were characterized using 16S ribosomal RNA gene sequencing, and unsupervised hierarchical clustering was performed on the Bray-Curtis ß-diversity. Enrichment scores of the Molecular Signatures Database hallmark gene sets were computed from the blood transcriptome using gene set variation analysis. Children with severe asthma or severe wheezing were followed up for 12-18 months, with assessment of the frequency of exacerbations. Measurements and Main Results: Oropharyngeal samples from 241 children (age range, 1-17 years; 40% female) revealed four taxa-driven clusters dominated by Streptococcus, Veillonella, Rothia, and Haemophilus. The clusters showed significant differences in atopic dermatitis, grass pollen sensitization, FEV1% predicted after salbutamol, and annual asthma exacerbation frequency during follow-up. The Veillonella cluster was the most allergic and included the highest percentage of children with two or more exacerbations per year during follow-up. The oropharyngeal clusters were different in the enrichment scores of TGF-ß (transforming growth factor-ß) (highest in the Veillonella cluster) and Wnt/ß-catenin signaling (highest in the Haemophilus cluster) transcriptomic pathways in blood (all q values <0.05). Conclusions: Analysis of the oropharyngeal microbiota of children with asthma or wheezing identified four clusters with distinct clinical characteristics (phenotypes) that associate with risk for exacerbation and transcriptomic pathways involved in airway remodeling. This suggests that further exploration of the oropharyngeal microbiota may lead to novel pathophysiologic insights and potentially new treatment approaches.


Assuntos
Asma , Hipersensibilidade , Microbiota , Feminino , Masculino , Humanos , Transcriptoma , Sons Respiratórios/genética , Asma/genética , Microbiota/genética
10.
J Allergy Clin Immunol ; 151(3): 619-633, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642652

RESUMO

The Copenhagen Prospective Studies on Asthma in Childhood (COPSAC) mother-child cohorts have provided a foundation of 25 years of research on the origins, prevention, and natural history of childhood asthma and related disorders. COPSAC's approach is characterized by clinical translational research with longitudinal deep phenotyping and exposure assessments from pregnancy, in combination with multi-omic data layers and embedded randomized controlled trials. One trial showed that fish oil supplementation during pregnancy prevented childhood asthma and identified pregnant women with the highest benefits from supplementation, thereby creating the potential for personalized prevention. COPSAC revealed that airway colonization with pathogenic bacteria in early life is associated with an increased risk of asthma. Further, airway bacteria were shown to be a trigger of acute asthma-like symptoms, with benefit from antibiotic treatment. COPSAC identified an immature gut microbiome in early life as a risk factor for asthma and allergy and further demonstrated that asthma can be predicted by infant lung function. At a molecular level, COPSAC has identified novel susceptibility genes, early immune deviations, and metabolomic alterations associated with childhood asthma. Thus, the COPSAC research program has enhanced our understanding of the processes causing childhood asthma and has suggested means of personalized prevention and treatment.


Assuntos
Asma , Hipersensibilidade , Feminino , Humanos , Gravidez , Estudos Prospectivos , Pesquisa Translacional Biomédica , Asma/genética , Hipersensibilidade/diagnóstico , Fatores de Risco
11.
J Allergy Clin Immunol ; 151(6): 1494-1502.e14, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36649759

RESUMO

BACKGROUND: Environmental, genetic, and microbial factors are independently associated with childhood asthma. OBJECTIVE: We sought to determine the roles of environmental exposures and 17q12-21 locus genotype in the maturation of the early-life microbiome in childhood asthma. METHODS: We analyzed fecal 16s rRNA sequencing at age 3 to 6 months and age 1 year to characterize microbial maturation of offspring of participants in the Vitamin D Antenatal Reduction Trial. We determined associations of microbial maturation and environmental exposures in the mediation of asthma risk at age 3 years. We examined 17q12-21 genotype and microbial maturation associations with asthma risk in Vitamin D Antenatal Reduction Trial and the replication cohort Copenhagen Prospective Studies on Childhood Asthma 2010. RESULTS: Accelerated fecal microbial maturation at age 3 to 6 months and delayed maturation at age 1 year were associated with asthma (P < .001). Fecal Bacteroides was reduced at age 3 to 6 months in association with subsequent asthma (P = .006) and among subjects with lower microbial maturation at age 1 year (q = 0.009). Sixty-one percent of the association between breast-feeding and asthma was mediated by microbial maturation at age 3 to 6 months. Microbial maturation and 17q12-21 genotypes exhibited independent, additive effects on childhood asthma risk. CONCLUSIONS: The intestinal microbiome and its maturation mediates associations between environmental exposures including breast-feeding and asthma. The intestinal microbiome and 17q12-21 genotype appear to exert additive and independent effects on childhood asthma risk.


Assuntos
Asma , Microbioma Gastrointestinal , Humanos , Feminino , Gravidez , Lactente , Pré-Escolar , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Estudos Prospectivos , Asma/genética , Vitamina D
12.
J Allergy Clin Immunol ; 151(1): 212-221, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075322

RESUMO

BACKGROUND: Exposure to ambient air pollution has been linked to asthma, allergic rhinitis, and other inflammatory disorders, but little is known about the underlying mechanisms. OBJECTIVE: We studied the potential mechanisms leading from prenatal ambient air pollution exposure to asthma and allergy in childhood. METHODS: Long-term exposure to nitrogen dioxide (NO2) as well as to particulate matter with a diameter of ≤2.5 and ≤10 µm (PM2.5 and PM10) were modeled at the residence level from conception to 6 years of age in 700 Danish children followed clinically for development of asthma and allergy. Nasal mucosal immune mediators were assessed at age 4 weeks and 6 years, inflammatory markers in blood at 6 months, and nasal epithelial DNA methylation and gene expression at age 6 years. RESULTS: Higher prenatal air pollution exposure with NO2, PM2.5, and PM10 was associated with an altered nasal mucosal immune profile at 4 weeks, conferring an increased odds ratio [95% confidence interval] of 2.68 [1.58, 4.62] for allergic sensitization and 2.63 [1.18, 5.81] for allergic rhinitis at age 6 years, and with an altered immune profile in blood at age 6 months conferring increased risk of asthma at age 6 years (1.80 [1.18, 2.76]). Prenatal exposure to ambient air pollution was not robustly associated with immune mediator, epithelial DNA methylation, or gene expression changes in nasal cells at age 6 years. CONCLUSION: Prenatal exposure to ambient air pollution was associated with early life immune perturbations conferring risk of allergic rhinitis and asthma. These findings suggest potential mechanisms of prenatal exposure to ambient air pollution on the developing immune system.


Assuntos
Poluentes Atmosféricos , Asma , Efeitos Tardios da Exposição Pré-Natal , Rinite Alérgica , Criança , Gravidez , Feminino , Humanos , Lactente , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Asma/etiologia , Asma/induzido quimicamente , Material Particulado/efeitos adversos , Rinite Alérgica/induzido quimicamente , Exposição Ambiental/efeitos adversos
13.
J Allergy Clin Immunol ; 152(6): 1646-1657.e11, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37558060

RESUMO

BACKGROUND: Gestational vitamin D deficiency is implicated in development of respiratory diseases in offspring, but the mechanism underlying this relationship is unknown. OBJECTIVE: We sought to study the link between gestational vitamin D exposure and childhood asthma phenotypes using maternal blood metabolomics profiling. METHODS: Untargeted blood metabolic profiles were acquired using liquid chromatography-mass spectrometry at 1 week postpartum from 672 women in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort and at pregnancy weeks 32 to 38 from 779 women in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) mother-child cohort. In COPSAC2010, we employed multivariate models and pathway enrichment analysis to identify metabolites and pathways associated with gestational vitamin D blood levels and investigated their relationship with development of asthma phenotypes in early childhood. The findings were validated in VDAART and in cellular models. RESULTS: In COPSAC2010, higher vitamin D blood levels at 1 week postpartum were associated with distinct maternal metabolome perturbations with significant enrichment of the sphingomyelin pathway (P < .01). This vitamin D-related maternal metabolic profile at 1 week postpartum containing 46 metabolites was associated with decreased risk of recurrent wheeze (hazard ratio [HR] = 0.92 [95% CI 0.86-0.98], P = .01) and wheeze exacerbations (HR = 0.90 [95% CI 0.84-0.97], P = .01) at ages 0 to 3 years. The same metabolic profile was similarly associated with decreased risk of asthma/wheeze at ages 0 to 3 in VDAART (odds ratio = 0.92 [95% CI 0.85-0.99], P = .04). Human bronchial epithelial cells treated with high-dose vitamin D3 showed an increased cytoplasmic sphingolipid level (P < .01). CONCLUSIONS: This exploratory metabolomics study in 2 independent birth cohorts demonstrates that the beneficial effect of higher gestational vitamin D exposure on offspring respiratory health is characterized by specific maternal metabolic alterations during pregnancy, which involves the sphingomyelin pathway.


Assuntos
Asma , Vitamina D , Pré-Escolar , Feminino , Humanos , Gravidez , Metaboloma , Estudos Prospectivos , Sons Respiratórios , Esfingomielinas , Ensaios Clínicos como Assunto
14.
J Allergy Clin Immunol ; 152(3): 667-675, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150361

RESUMO

BACKGROUND: The mechanisms underlying the protective effect of older siblings on allergic disease remain unclear but may relate to the infant gut microbiota. OBJECTIVE: We sought to investigate whether having older siblings decreases the risk of IgE-mediated food allergy by accelerating the maturation of the infant gut microbiota. METHODS: In a birth cohort assembled using an unselected antenatal sampling frame (n = 1074), fecal samples were collected at 1 month, 6 months, and 1 year, and food allergy status at 1 year was determined by skin prick test and in-hospital food challenge. We used 16S rRNA gene amplicon sequencing to derive amplicon sequence variants. Among a random subcohort (n = 323), microbiota-by-age z scores at each time point were calculated using fecal amplicon sequence variants to represent the gut microbiota maturation over the first year of life. RESULTS: A greater number of siblings was associated with a higher microbiota-by-age z score at age 1 year (ß  = 0.15 per an additional sibling; 95% CI, 0.05-0.24; P = .003), which was in turn associated with decreased odds of food allergy (odds ratio, 0.45; 95% CI, 0.33-0.61; P < .001). Microbiota-by-age z scores mediated 63% of the protective effect of siblings. Analogous associations were not observed at younger ages. CONCLUSIONS: The protective effect of older siblings on the risk of developing IgE-mediated food allergy during infancy is substantially mediated by advanced maturation of the gut microbiota at age 1 year.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Gravidez , Lactente , Humanos , Feminino , Irmãos , RNA Ribossômico 16S/genética , Hipersensibilidade Alimentar/prevenção & controle , Imunoglobulina E
15.
J Infect Dis ; 227(3): 448-456, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927195

RESUMO

BACKGROUND: We hypothesized that insufficient intake of fish oil-derived omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) during pregnancy is a contributing factor to gastroenteritis in early childhood. We examined the effect of n-3 LCPUFA supplementation on gastroenteritis symptoms in the offspring's first 3 years of life. METHODS: This was a double-blinded, randomized controlled trial whereby 736 mothers were administered n-3 LCPUFA or control from pregnancy week 24 until 1 week after birth. We measured the number of days with gastroenteritis, number of episodes with gastroenteritis, and the risk of having a gastroenteritis episode in the first 3 years of life. RESULTS: A median reduction of 2.5 days with gastroenteritis (P = .018) was shown, corresponding to a 14% reduction in the n-3 LCPUFA group compared with controls in the first 3 years of life (P = .037). A reduction in the number of gastroenteritis episodes (P = .027) and a reduced risk of having an episode (hazard ratio, 0.80 [95% confidence interval, .66-.97]; P = .023) were also shown. CONCLUSIONS: Fish oil supplementation from the 24th week of pregnancy led to a reduction in the number of days and episodes with gastroenteritis symptoms in the first 3 years of life. The findings suggest n-3 LCPUFA supplementation as a preventive measure against gastrointestinal infections in early childhood. CLINICAL TRIALS REGISTRATION: NCT00798226.


Assuntos
Ácidos Graxos Ômega-3 , Gastroenterite , Gravidez , Feminino , Pré-Escolar , Humanos , Óleos de Peixe/uso terapêutico , Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Gastroenterite/prevenção & controle
16.
Thorax ; 78(12): 1168-1174, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37696621

RESUMO

BACKGROUND: We recently conducted a double-blinded randomised controlled trial showing that fish-oil supplementation during pregnancy reduced the risk of persistent wheeze or asthma in the child by 30%. Here, we explore the mechanisms of the intervention. METHODS: 736 pregnant women were given either placebo or n-3 long-chain polyunsaturated fatty acids (LCPUFAs) in the third trimester in a randomised controlled trial. Deep clinical follow-up of the 695 children in the trial was done at 12 visits until age 6 years, including assessment of genotype at the fatty acid desaturase (FADS) locus, plasma fatty acids, airway DNA methylation, gene expression, microbiome and metabolomics. RESULTS: Supplementation with n-3 LCPUFA reduced the overall risk of non-atopic asthma by 73% at age 6 (relative risk (RR) 0.27 (95% CI 0.06 to 0.85), p=0.042). In contrast, there was no overall effect on asthma with atopic traits (RR 1.42 (95% CI 0.63 to 3.38), p=0.40), but this was significantly modified by maternal FADS genotype and LCPUFA blood levels (interaction p<0.05), and supplementation did reduce the risk of atopic asthma in the subgroup of mothers with FADS risk variants and/or low blood levels of n-3 LCPUFA before the intervention (RR 0.31 (95% CI 0.11 to 0.75), p=0.016). Furthermore, n-3 LCPUFA significantly reduced the number of infections (croup, gastroenteritis, tonsillitis, otitis media and pneumonia) by 16% (incidence rate ratio 0.84 (95% CI 0.74 to 0.96), p=0.009). CONCLUSIONS: n-3 LCPUFA supplementation in pregnancy showed protective effects on non-atopic asthma and infections. Protective effects on atopic asthma depended on maternal FADS genotype and n-3 LCPUFA levels. This indicates that the fatty acid pathway is involved in multiple mechanisms affecting the risk of asthma subtypes and infections. TRIAL REGISTRATION NUMBER: NCT00798226.


Assuntos
Asma , Ácidos Graxos Ômega-3 , Criança , Feminino , Humanos , Gravidez , Óleos de Peixe/uso terapêutico , Suplementos Nutricionais , Asma/prevenção & controle , Ácidos Graxos
17.
Clin Exp Allergy ; 53(12): 1268-1278, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849355

RESUMO

INTRODUCTION: Rural children have a lower risk of asthma and atopic diseases than urban children. However, whether indoor microbiota in non-farming rural homes provides protection is unclear. METHODS: Here, we examine if microbes in the beds of rural and urban infants are associated with later development of atopic diseases. We studied fungi and bacteria in the beds of 6-month-old infants (n = 514) in association with the risk of asthma, allergic rhinitis, eczema and aeroallergen sensitization at 6 years of age in the prospective COPSAC2010 cohort. RESULTS: Both fungal and bacterial diversity were lower in the beds of children, who later developed allergic rhinitis (-0.22 [-0.43,-0.01], padj = .04 and -.24 [-0.42,-0.05], padj = .01 respectively) and lower bacterial richness was discovered in beds of children later developing asthma (-41.34 [-76.95,-5.73], padj = .02) or allergic rhinitis (-45.65 [-81.19,-10.10], padj = .01). Interestingly, higher fungal diversity and richness were discovered in the beds of children developing eczema (0.23 [0.02,0.43], padj = .03 and 29.21 [1.59,56.83], padj = .04 respectively). We defined a limited set of fungal and bacterial genera that predicted rural/urban environment. Some rural-associated bacterial genera such as Romboutsia and Bacillus and fungal genera Spegazzinia and Physcia were also associated with reduced risk of diseases, including eczema. These fungal and bacterial fingerprints predicting the living environment were associated with asthma and allergic rhinitis, but not eczema, with rural compositions being protective. The bed dust bacteria mediated 27% of the protective association of a rural living environment for allergic rhinitis (p = .04). CONCLUSIONS: Bed dust microbes can be differentially associated with airway- and skin-related diseases. The differing bed dust microbiota between rural and urban infants may influence their later risk of asthma and allergic rhinitis.


Assuntos
Asma , Eczema , Rinite Alérgica , Lactente , Criança , Humanos , Estudos Prospectivos , Asma/epidemiologia , Asma/etiologia , Poeira , Bactérias , Rinite Alérgica/epidemiologia , Rinite Alérgica/etiologia , Fungos
18.
Allergy ; 78(2): 429-438, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36254396

RESUMO

BACKGROUND: Intake of fish-oil and fatty fish during pregnancy has been shown to reduce the risk of childhood asthma but biomarkers of such intake are lacking. OBJECTIVE: To establish biomarkers of prenatal fish-oil exposure from newborn dry blood spot metabolomics profiles and assess their relevance for childhood asthma risk stratification. METHODS: The Danish COPSAC2010 mother-child cohort was utilized to investigate the effect of a double-blinded randomized controlled trial of fish-oil supplementation during pregnancy on dry blood spot liquid-chromatography mass spectrometry-based metabolomics profiles of 677 newborns. We thereafter investigated the association between fish-oil associated biomarkers in the newborn and development of asthma-related outcomes. Replication was sought in the independent observational COPSAC2000 cohort with 387 newborn metabolomics profiles. RESULTS: The newborn metabolomics profiles differed between children in the fish-oil vs. placebo group in COPSAC2010 (area under the receiver operator curve = 0.94 ± 0.03, p < .001). The fish-oil metabolomics profile and the top biomarker, 3-carboxy-4-methyl-5-propyl-2-furan propanoic acid (CMPF) were both associated with a decreased risk of asthma by age 6 years (HR = 0.89, p = .002 and HR = 0.67, p = .005, respectively). In COPSAC2000 , newborn CMPF level was also inversely associated with asthma risk by age 6 years (HR = 0.69, p = .01). Troublesome lung symptoms and common infections in the first 3 years were also inversely associated with newborn CMPF levels in both cohorts. CONCLUSIONS: Newborn children's blood levels of the furan fatty acid metabolite CMPF reflect fish-oil and fatty fish intake during pregnancy and are associated with a lower risk of asthma across two cohorts, which could aid newborn screening for childhood asthma.


Assuntos
Asma , Ácidos Graxos , Gravidez , Feminino , Animais , Óleos de Peixe , Asma/diagnóstico , Asma/epidemiologia , Asma/tratamento farmacológico , Furanos , Biomarcadores , Suplementos Nutricionais
19.
Allergy ; 78(2): 418-428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36107703

RESUMO

BACKGROUND: The infant fecal microbiome is known to impact subsequent asthma risk, but the environmental exposures impacting this association, the role of the maternal microbiome, and how the microbiome impacts different childhood asthma phenotypes are unknown. METHODS: Our objective was to identify associations between features of the prenatal and early-life fecal microbiomes and child asthma phenotypes. We analyzed fecal 16 s rRNA microbiome profiling and fecal metabolomic profiling from stool samples collected from mothers during the third trimester of pregnancy (n = 120) and offspring at ages 3-6 months (n = 265), 1 (n = 436) and 3 years (n = 506) in a total of 657 mother-child pairs participating in the Vitamin D Antenatal Asthma Reduction Trial. We used clinical data from birth to age 6 years to characterize subjects with asthma as having early, transient or active asthma phenotypes. In addition to identifying specific genera that were robustly associated with asthma phenotypes in multiple covariate-adjusted models, we clustered subjects by their longitudinal microbiome composition and sought associations between fecal metabolites and relevant microbiome and clinical features. RESULTS: Seven maternal and two infant fecal microbial taxa were robustly associated with at least one asthma phenotype, and a longitudinal gut microenvironment profile was associated with early asthma (Fisher exact test p = .03). Though mode of delivery was not directly associated with asthma, we found substantial evidence for a pathway whereby cesarean section reduces fecal Bacteroides and microbial sphingolipids, increasing susceptibility to early asthma. CONCLUSION: Overall, our results suggest that the early-life, including prenatal, fecal microbiome modifies risk of asthma, especially asthma with onset by age 3 years.


Assuntos
Asma , Microbioma Gastrointestinal , Microbiota , Feminino , Gravidez , Humanos , Cesárea , Asma/diagnóstico , Asma/epidemiologia , Asma/etiologia , Fenótipo
20.
Pediatr Allergy Immunol ; 34(10): e14026, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877844

RESUMO

BACKGROUND: Dental caries and enamel defects are the main causes of poor dental health in children, with a substantial impact on their well-being. Use of inhaled asthma medication is a suspected risk factor, but there is a lack of prospective studies investigating this and other prenatal and early life risk factors. METHODS: Copenhagen Prospective Studies on Asthma in Childhood 2010 mother-child cohort (COPSAC2010 ) consists of 700 women who were recruited at 24 weeks of pregnancy. 588 of their children participated in a dental examination at 6 years of age (84%) at the COPSAC2010 research unit. Caries was defined as decayed, missing, or filled surfaces. Enamel defect was defined as demarcated opacity, post-eruptive enamel breakdown, and/or atypical restoration on at least one molar. Caries and enamel defects were assessed in both deciduous and permanent dentitions. RESULTS: We found no associations between inhaled corticosteroids or ß2 -agonists or asthma symptoms in early childhood and the risk of caries or enamel defects by 6 years of age. Furthermore, we found no strong pre-, peri-, or postnatal risk factors for dental diseases at 6 years, except from nominally significant associations between antibiotic use in pregnancy (OR = 1.25, [1.01-1.54]), maternal education level (OR = 1.57, [1.01-2.45]), having a dog at home (OR = 0.50, [0.27-0.93]), and risk of enamel defects. CONCLUSIONS: Use of inhaled corticosteroids, ß2 -agonists, or asthma symptoms in the first 6 years of life were not associated with the development of caries or enamel defects. This finding is reassuring for parents and physicians prescribing asthma medication for young children.


Assuntos
Asma , Cárie Dentária , Animais , Cães , Gravidez , Humanos , Pré-Escolar , Feminino , Estudos Prospectivos , Antibacterianos , Asma/tratamento farmacológico , Asma/epidemiologia , Corticosteroides
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa