Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(33): e202305817, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37345904

RESUMO

Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps-to-ns timescales, is much faster than proton delivery (∼µs), which limits the activity. Therefore, the acceleration of abstraction of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production. The photobasic effect that is the increase in proton affinity upon excitation offers means to achieve this objective. Herein, we design photobasic carbon dots and identify that internal pyridinic N sites are intrinsically photobasic. This is supported by steady-state and ultrafast spectroscopic measurements that demonstrate proton abstraction within a few picoseconds of excitation. Furthermore, we show that in water, they form a unique four-level lasing scheme with optical gain and stimulated emission. The latter competes with photocatalysis, revealing a rather unique mechanism for efficiency loss, such that the stimulated emission can act as a toggle for photocatalytic activity. This provides additional means of controlling the photocatalytic process and helps the rational design of photocatalytic materials.

2.
Nano Lett ; 21(18): 7887-7893, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34191527

RESUMO

Bismuth oxyiodide (BiOI) is a promising material for photocatalysis combining intriguing optical and structural properties. We show that excitation by a femtosecond laser pulse creates coherent phonons inducing a time-variant oscillating modulation of the optical density. We find that the two underlying frequencies originate from lattice vibrations along the [001] crystallographic axis, the stacking direction of oppositely charged layers in BiOI. This is consistent with a subpicosecond charge separation driven by a built-in dipolar field. This partially screens the field, launching coherent phonons. Further, we determine the two major dephasing mechanisms that lead to the loss of vibronic coherence: (i) the anharmonic decay of an optical phonon into two acoustic phonons and (ii) phonon-carrier scattering. Our results provide a direct demonstration of the presence of an electric field in BiOI along the [001] axis and show its role in efficient charge separation that is crucial for photocatalytic applications of BiOI.

3.
Angew Chem Int Ed Engl ; 60(51): 26694-26701, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643975

RESUMO

It usually requires high temperature and high pressure to reform methanol with water to hydrogen with high turnover frequency (TOF). Here we show that hydrogen can be produced from alkaline methanol on a light-triggered multi-layer system with a very high hydrogen evolution rate up to ca. 1 µmol s-1 under the illumination of a standard Pt-decorated carbon nitride. The system can achieve a remarkable TOF up to 1.8×106  moles of hydrogen per mole of Pt per hour under mild conditions. The total turnover number (TTN) of 470 000 measured over 38 hours is among the highest reported. The system does not lead to any COx emissions, hence it could feed clean hydrogen to fuel cells. In contrast to a slurry system, the proposed multi-layer system avoids particle aggregation and effectively uses light and Pt active sites. The performance is also attributed to the light-triggered reforming of alkaline methanol. This notable performance is a promising step toward practical light-driven hydrogen generation.

4.
Small ; 14(44): e1802278, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30589504

RESUMO

A novel colloidal approach is presented for preparing fully dispersed nanoparticle (NP) assemblies (clusters) of narrow size-polydispersity over a wide range of sizes through irreversible depletion of stabilizing ligands onto a liquid-liquid interface. Unusually, the relative monodispersity of the assemblies continuously improves throughout the process. A detailed kinetics study into the assembly of iron oxide NP clusters shows that the assembly rate decreases with NP concentration, pinpointing the role of the interface in size focusing. A new protocol for identifying initial conditions that enable controlled assembly is described, which allows extension of the approach to multiple NP types, opening up a general route to colloidally processed materials. The process uses cheap materials, it is reproducible, robust, and scaleable, and it allows for selection of both particle and cluster size. In the case of assemblies of magnetic iron oxide NPs, these advantages enable tuning of the magnetic properties of the assemblies for applications such as magnetically targetable MRI-trackable agents in biomedicine.

5.
Nano Lett ; 17(12): 7710-7716, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29188711

RESUMO

Carbon dots (CDs) are an intriguing fluorescent material; however, due to a plethora of synthesis techniques and precursor materials, there is still significant debate on their structure and the origin of their optical properties. The two most prevalent mechanisms to explain them are based on polycyclic aromatic hydrocarbon domains and small molecular fluorophores, for instance, citrazinic acid. Yet, how these form and whether they can exist simultaneously is still under study. To address this, we vary the hydrothermal synthesis time of CDs obtained from citric acid and ethylenediamine and show that in the initial phase molecular fluorophores, likely 2-pyridone derivatives, account for the blue luminescence of the dots. However, over time, while the overall size of the CDs does not change, aromatic domains form and grow, resulting in a second, faster decay channel at similar wavelengths and also creating additional lower energetic states. Electrophoresis provides further evidence that the ensemble of CDs consists of several subsets with different internal structure and surface charge. The understanding of the formation mechanism enables a control of the chemical origin of these emitters and the ensuing optical properties of the CDs through synthetic means.

6.
J Am Chem Soc ; 139(46): 16462-16465, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29110474

RESUMO

The crucial separation of photocarriers in solar cells can be efficiently driven by contacting semiconductor phases with differing doping levels. Here we show that intrinsic doping surges in methylammonium lead iodide (MAPbI3) crystals as a response to environmental basicity. MAPbI3 crystals were passivated with polybases to induce the deprotonation of its methylammonium ions (MA+). Stable crystals showed marked increases in photoluminescence and radiative decay, attributed to the presence of unbalanced charges acting as doped carriers. This emulates in a controlled manner the proton-withdrawing conditions of polycrystalline films, where excess basic precursors are found between grains. Raman spectroscopy showed the collective alignment of MA+ cations within the intrinsically doped lattices, thus revealing the buildup of electric fields. On this basis, we propose a mechanism for the formation of doping-gradients toward grain boundaries, potentially explaining the extended photocarrier lifetimes and diffusion lengths observed in perovskite solar cells.

7.
Phys Chem Chem Phys ; 18(18): 12716-24, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27097887

RESUMO

The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

8.
Nano Lett ; 15(9): 6030-5, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26269962

RESUMO

Carbon dots (CDs) have attracted rapidly growing interest in recent years due to their unique and tunable optical properties, the low cost of fabrication, and their widespread uses. However, due to the complex structure of CDs, both the molecular ingredients and the intrinsic mechanisms governing photoluminescence of CDs are poorly understood. Among other features, a large Stokes shift of over 100 nm and a photoluminescence spectrally dependent on the excitation wavelength have so far not been adequately explained. In this Letter we investigate CDs and develop a model system to mimic their optical properties. This system comprised three types of polycyclic aromatic hydrocarbon (PAH) molecules with fine-tuned concentrations embedded in a polymer matrix. The model suggests that the Stokes shift in CDs is due to the self-trapping of an exciton in the PAH network. The width and the excitation dependence of the emission comes from a selective excitation of PAHs with slightly different energy gaps and from energy transfer between them. These insights will help to tailor the optical properties of CDs and help their implementation into applications, e.g., light-emitting devices and biomarkers. This could also lead to "artificial" tunable carbon dots by locally modifying the composition and consequently the optical properties of composite PAH films.

9.
Nano Lett ; 15(10): 6521-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26327242

RESUMO

Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites.

10.
J Am Chem Soc ; 137(44): 14007-10, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26479775

RESUMO

Copper(I)-based catalysts, such as Cu2S, are considered to be very promising materials for photocatalytic CO2 reduction. A common synthesis route for Cu2S via cation exchange from CdS nanocrystals requires Cu(I) precursors, organic solvents, and neutral atmosphere, but these conditions are not compatible with in situ applications in photocatalysis. Here we propose a novel cation exchange reaction that takes advantage of the reducing potential of photoexcited electrons in the conduction band of CdS and proceeds with Cu(II) precursors in an aqueous environment and under aerobic conditions. We show that the synthesized Cu2S photocatalyst can be efficiently used for the reduction of CO2 to carbon monoxide and methane, achieving formation rates of 3.02 and 0.13 µmol h(-1) g(-1), respectively, and suppressing competing water reduction. The process opens new pathways for the preparation of new efficient photocatalysts from readily available nanostructured templates.

11.
Nat Mater ; 13(11): 1013-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25087066

RESUMO

Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g(-1) h(-1), respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.

12.
Angew Chem Int Ed Engl ; 52(29): 7372-408, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23765842

RESUMO

Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

13.
Chemphyschem ; 13(3): 797-810, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22287425

RESUMO

Bistable [2]rotaxanes have been attached through a bulky tripodal linker to the surface of titanium dioxide nanoparticles and studied by cyclic voltammetry and spectroelectrochemical methods. The axle component in the [2]rotaxane contains two viologen sites, V(1) and V(2), interconnected by a rigid terphenylene bridge. In their parent dication states, V(1)(2+) and V(2)(2+) can both accommodate a crown ether ring, C, but are not equivalent in terms of their affinity towards C and have different electrochemical reduction potentials. The geometry and size of the tripodal linker help to maintain a perpendicular [2]rotaxane orientation at the surface and to avoid unwanted side-to-side interactions. When the rigid [2]rotaxane or its corresponding axle are adsorbed on a TiO(2) nanoparticle, viologen V(2)(2+) is reduced at significantly more negative potentials (-0.3 V) than in flexible analogues that contain aliphatic bridges between V(1) and V(2). These overpotentials are analysed in terms of electron-transfer rates and a donor-bridge-acceptor (D-B-A) formalism, in which D is the doubly reduced viologen, V(1)(0), adjacent to the TiO(2) surface (TiO(2)-V(1)(0)), B is the terphenylene bridge and A is viologen V(2)(2+). We have also found that, in contrast with earlier findings in solution, no molecular shuttling occurs in rigid [2]rotaxane adsorbed at the surface. The observations were explained by the relative position of the viologen stations within the electrical double layer, screening of V(2)(2+) by the counterions and high capacity of the medium, which reduces the mobility of the crown ether. The results are useful in transposing of solution-based molecular switches to the interface or in the design and understanding of the properties of systems comprising electroactive and/or interlocked molecules adsorbed at the nanostructured TiO(2) surface.

14.
Nanoscale ; 14(39): 14368-14384, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36156633

RESUMO

Carbon dots (CDs), an emerging class of nanomaterials, have attracted considerable attention due to their intriguing photophysical properties. Despite their indisputable potential of utilization in many fascinating areas of research and life, some fundamental aspects concerning their structure and the origin of their photoluminescence (PL) properties still await clarification. The mechanism of PL emission of CDs is associated with their structure, which is dependent on the carbonization process. At the initial stages of CD synthesis via a bottom-up approach, molecular fluorophores are considered to dominate the optical characteristics of the resulting nanomaterials. In this review, the recent progress in the use of molecular state theory for explanation of the structure-property relationship in CDs is summarized. This review focuses exclusively on the molecular fluorophores existing in nanomaterials prepared from citric acid (CA) as one of the most frequent carbon sources reported for the bottom-up synthesis of CDs. Consequently, the most relevant transformations of CA and the history of molecular fluorophores derived from it are described, followed by an in-depth discussion on their relevance in understanding the specific photophysical properties of blue-, green-, and red-emitting CDs. Finally, the challenging issues and future perspectives of molecular state PL mechanism exploration in CDs are highlighted.

15.
ACS Nano ; 15(7): 10775-10981, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34137264

RESUMO

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

16.
Nat Commun ; 11(1): 5179, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056986

RESUMO

Carbon dots (CDs) are a promising nanomaterial for photocatalytic applications. However, the mechanism of the photocatalytic processes remains the subject of a debate due to the complex internal structure of the CDs, comprising crystalline and molecular units embedded in an amorphous matrix, rendering the analysis of the charge and energy transfer pathways between the constituent parts very challenging. Here we propose that the photobasic effect, that is the abstraction of a proton from water upon excitation by light, facilitates the photoexcited electron transfer to the proton. We show that the controlled inclusion in CDs of a model photobase, acridine, resembling the molecular moieties found in photocatalytically active CDs, strongly increases hydrogen generation. Ultrafast spectroscopy measurements reveal proton transfer within 30 ps of the excitation. This way, we use a model system to show that the photobasic effect may be contributing to the photocatalytic H2 generation of carbon nanomaterials and suggest that it may be tuned to achieve further improvements. The study demonstrates the critical role of the understanding the dynamics of the CDs in the design of next generation photocatalysts.

17.
ACS Nano ; 13(6): 6711-6719, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31046244

RESUMO

Two-dimensional triphenylene-based metal-organic frameworks (TP-MOFs) attract significant scientific interest due to their long-range order combined with significant electrical conductivity. The deposition of these structures as oriented films is expected to promote their incorporation into diverse optoelectronic devices. However, to date, a controlled deposition strategy applicable for the different members of this MOF family has not been reported yet. Herein, we present the synthesis of highly oriented thin films of TP-MOFs by vapor-assisted conversion (VAC). We targeted the M-CAT-1 series comprising hexahydroxytriphenylene organic ligands and metal-ions such as Ni2+, Co2+, and Cu2+. These planar organic building blocks are connected in-plane to the metal-ions through a square planar node forming extended sheets which undergo self-organization into defined stacks. Highly oriented thin Ni- and Co-CAT-1 films grown on gold substrates feature a high surface coverage with a uniform film topography and thickness ranging from 180 to 200 nm. The inclusion of acid modulators in the synthesis enabled the growth of films with a preferred orientation on quartz and on conductive substrates such as indium-doped tin oxide (ITO). The van der Pauw measurements performed across the M-CAT-1 films revealed high electrical conductivity values of up to 10-3 S cm-1 for both the Ni- and Co-CAT-1 films. Films grown on quartz allowed for a detailed photophysical characterization by means of UV-vis, photoluminescence, and transient absorption spectroscopy. The latter revealed the existence of excited states on a nanosecond time scale, sufficiently long to demonstrate a photoinduced charge generation and extraction in Ni-CAT-1 films. This was achieved by fabricating a basic photovoltaic device with an ITO/Ni-CAT-1/Al architecture, thus establishing this MOF as a photoactive material. Our results point to the intriguing capabilities of these conductive M-CAT-1 materials and an additional scope of applications as photoabsorbers enabled through VAC thin-film synthesis.

18.
Nat Commun ; 8(1): 1401, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123091

RESUMO

Carbon dots (CDs) are a versatile nanomaterial with attractive photoluminescent and photocatalytic properties. Here we show that these two functionalities can be easily tuned through a simple synthetic means, using a microwave irradiation, with citric acid and varying concentrations of nitrogen-containing branched polyethyleneimine (BPEI) as precursors. The amount of BPEI determines the degree of nitrogen incorporation and the different inclusion modes within the CDs. At intermediate levels of BPEI, domains grow containing mainly graphitic nitrogen, producing a high photoluminescence yield. For very high (and very low) BPEI content, the nitrogen atoms are located primarily at the edge sites of the aromatic domains. Accordingly, they attract photogenerated electrons, enabling efficient charge separation and enhanced photocatalytic hydrogen generation from water. The ensuing ability to switch between emissive and photocatalytic behavior of CDs is expected to bring substantial improvements on their efficiency for on-demand light emission or energy conversion applications.


Assuntos
Carbono/química , Luminescência , Nitrogênio/química , Processos Fotoquímicos , Pontos Quânticos/química , Catálise , Ácido Cítrico/química , Micro-Ondas
19.
Adv Mater ; 28(27): 5400-24, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27411644

RESUMO

The current state of the art in the use of colloidal methods to form nanoparticle assemblies, or clusters (NPCs) is reviewed. The focus is on the two-step approach, which exploits the advantages of bottom-up wet chemical NP synthesis procedures, with subsequent colloidal destabilization to trigger assembly in a controlled manner. Recent successes in the application of functional NPCs with enhanced emergent collective properties for a wide range of applications, including in biomedical detection, surface enhanced Raman scattering (SERS) enhancement, photocatalysis, and light harvesting, are highlighted. The role of the NP-NP interactions in the formation of monodisperse ordered clusters is described and the different assembly processes from a wide range of literature sources are classified according to the nature of the perturbation from the initial equilibrium state (dispersed NPs). Finally, the future for the field and the anticipated role of computational approaches in developing next-generation functional NPCs are briefly discussed.

20.
Adv Mater ; 28(27): 5764, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27411645

RESUMO

Clusters or assemblies of nanoparticles exhibit unique features which arise from the enhancement of properties of single nanoparticles or due to new collective properties. On page 5400, D. F. Brougham and co-workers review the role of nanoparticle interactions in controlling cluster formation, and classify the assembly mechanisms. Emerging applications for surface-enhanced Raman scattering (SERS), optical labeling, light harvesting, magnetic resonance imaging (MRI), hyperthermia, photocatalysis, enrichment, and separation are presented. Cover image by Christoph Hohmann, Nanosystems Initiative Munich (NIM).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa