RESUMO
A significant limitation of rechargeable lithium-ion batteries arises because most of the ionic current is carried by the anion, the ion that does not participate in energy-producing reactions. Single-ion-conducting block copolymer electrolytes, wherein all of the current is carried by the lithium cations, have the potential to dramatically improve battery performance. The relationship between ionic conductivity and morphology of single-ion-conducting poly(ethylene oxide)-b-polystyrenesulfonyllithium(trifluoromethylsulfonyl)imide (PEO-PSLiTFSI) diblock copolymers was studied by small-angle X-ray scattering and ac impedance spectroscopy. At low temperatures, an ordered lamellar phase is obtained, and the "mobile" lithium ions are trapped in the form of ionic clusters in the glassy polystyrene-rich microphase. An increase in temperature results in a thermodynamic transition to a disordered phase. Above this transition temperature, the lithium ions are released from the clusters, and ionic conductivity increases by several orders of magnitude. This morphology-conductivity relationship is very different from all previously published data on published electrolytes. The ability to design electrolytes wherein most of the current is carried by the lithium ions, to sequester them in nonconducting domains and release them when necessary, has the potential to enable new strategies for controlling the charge-discharge characteristics of rechargeable lithium batteries.
RESUMO
The main objective of this work is to study charge transport in mixtures of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) block copolymers and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI). The P3HT-rich microphase conducts electronic charge, while the PEO-rich microphase conducts ionic charge. The nearly symmetric P3HT-PEO copolymer used in this study self-assembles into a lamellar phase. In contrast, the morphologies of asymmetric copolymers with P3HT as the major component are dominated by nanofibrils. A combination of ac and dc impedance measurements was used to determine the electronic and ionic conductivities of our samples. The ionic conductivities of P3HT-PEO/LiTFSI mixtures are lower than those of mixtures of PEO homopolymer and LiTFSI, in agreement with published data obtained from other block copolymer/salt mixtures. In contrast, the electronic conductivities of the asymmetric P3HT-PEO copolymers are significantly higher than those of the P3HT homopolymer. This is unexpected because of the presence of the nonelectronically conducting PEO microphase. This implies that the intrinsic electronic conductivity of the P3HT microphase in P3HT-PEO copolymers is significantly higher than that of P3HT homopolymers.