Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(8): e56100, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37291955

RESUMO

GCN2/eIF2αK4 is exclusively seen as an eIF2α kinase, which regulates reprogramming of protein translation in response to stress. Here, we show that GCN2 has an unexpected role in unstressed cells as a regulator of mitosis. This function is not through its canonical role in translation reprogramming, but through the regulation of two previously unidentified substrates, PP1α and γ. In the absence of GCN2 function, timing and levels of phosphorylation of key mitotic players are altered, leading to aberrant chromosome alignment, missegregating chromosomes, elevated number of tripolar spindles, and a delay in progression through mitosis. Pharmacological inhibition of GCN2 results in similar effects and is synergistic with Aurora A inhibition in causing more severe mitotic errors and cell death. We suggest that GCN2-dependent phosphorylation of PP1α and γ restrains their activity and this is important to ensure the timely regulation of phosphorylation of several PP1 substrates during early mitosis. These findings highlight a druggable PP1 inhibitor and open new avenues of research on the therapeutic potential of GCN2 inhibitors.


Assuntos
Mitose , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Cromossomos/metabolismo
2.
J Cell Sci ; 131(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072440

RESUMO

It is generally accepted that global translation varies during the cell cycle and is low during mitosis. However, addressing this issue is challenging because it involves cell synchronization, which evokes stress responses that, in turn, affect translation rates. Here, we have used two approaches to measure global translation rates in different cell-cycle phases. First, synchrony in different cell-cycle phases was obtained involving the same stress, by using temperature-sensitive mutants. Second, translation and DNA content were measured by flow cytometry in exponentially growing, single cells. We found no major variation in global translation rates through the cell cycle in either fission yeast or mammalian cells. We also measured phosphorylation of eukaryotic initiation factor-2α, an event that is thought to downregulate global translation in mitosis. In contrast with the prevailing view, eIF2α phosphorylation correlated poorly with downregulation of global translation and ectopically induced eIF2α phosphorylation inhibited global translation only at high levels.


Assuntos
Ciclo Celular , Biossíntese de Proteínas , Schizosaccharomyces/genética , Animais , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Mitose , Fosforilação , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
3.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936296

RESUMO

Eukaryotic cells make the decision to proliferate, to differentiate or to cease dividing during G1, before passage through the restriction point or Start. Keeping cyclin-dependent kinase (CDK) activity low during this period restricts commitment to a new cell cycle and is essential to provide the adequate timeframe for the sensing of environmental signals. Here, we review the role of protein phosphatases in the modulation of CDK activity and as the counteracting force for CDK-dependent substrate phosphorylation, in budding and fission yeast. Moreover, we discuss recent findings that place protein phosphatases in the interface between nutritional signalling pathways and the cell cycle machinery.


Assuntos
Quinases Ciclina-Dependentes/genética , Fase G1/genética , Fosfoproteínas Fosfatases/genética , Proliferação de Células/genética , Fosforilação , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
4.
J Cell Sci ; 130(23): 4028-4037, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046339

RESUMO

When cells are exposed to stress they delay entry into mitosis. The most extensively studied mechanism behind this delay is the DNA-damage-induced G2/M checkpoint. Here, we show the existence of an additional stress-response pathway in Schizosaccharomyces pombe that is independent of the classic ATR/Rad3-dependent checkpoint. This novel mechanism delays entry mitosis independently of the spindle assembly checkpoint and the mitotic kinases Fin1, Ark1 and Plo1. The pathway delays activation of the mitotic cyclin-dependent kinase (CDK) Cdc2 after UV irradiation. Furthermore, we demonstrate that translation of the mitotic cyclin Cdc13 is selectively downregulated after UV irradiation, and we propose that this downregulation of Cdc13 contributes to the delayed activation of Cdc2 and the delayed mitosis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Mitose/fisiologia , Raios Ultravioleta , Proteína Quinase CDC2/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
iScience ; 23(5): 101063, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361273

RESUMO

Exit from the cell cycle during the establishment of quiescence and upon cell differentiation requires the sustained inactivation of CDK complexes. Fission yeast cells deprived of nitrogen halt cell cycle progression in pre-Start G1, before becoming quiescent or undergoing sexual differentiation. The CDK inhibitor Rum1 and the APC/C activator Ste9 are fundamental for this arrest, but both are down-regulated by CDK complexes. Here, we show that PP2A-B56Par1 is instrumental for Rum1 stabilization and Ste9 activation. In the absence of PP2A-B56Par1, cells fail to accumulate Rum1, and this results in persistent CDK activity, Ste9 inactivation, retention of the mitotic cyclin Cdc13, and impaired withdrawal from the cell cycle during nitrogen starvation. Importantly, mutation of a putative B56 interacting motif in Rum1 recapitulates these defects. These results underscore the relevance of CDK-counteracting phosphatases in cell differentiation, establishment of the quiescent state, and escape from it in cancer cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa