Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542073

RESUMO

Modulated electro-hyperthermia (mEHT) is an adjuvant cancer therapy that enables tumor-selective heating (+2.5 °C). In this study, we investigated whether mEHT accelerates the tumor-specific delivery of doxorubicin (DOX) from lyso-thermosensitive liposomal doxorubicin (LTLD) and improves its anticancer efficacy in mice bearing a triple-negative breast cancer cell line (4T1). The 4T1 cells were orthotopically injected into Balb/C mice, and mEHT was performed on days 9, 12, and 15 after the implantation. DOX, LTLD, or PEGylated liposomal DOX (PLD) were administered for comparison. The tumor size and DOX accumulation in the tumor were measured. The cleaved caspase-3 (cC3) and cell proliferation were evaluated by cC3 or Ki67 immunohistochemistry and Western blot. The LTLD+mEHT combination was more effective at inhibiting tumor growth than the free DOX and PLD, demonstrated by reductions in both the tumor volume and tumor weight. LTLD+mEHT resulted in the highest DOX accumulation in the tumor one hour after treatment. Tumor cell damage was associated with cC3 in the damaged area, and with a reduction in Ki67 in the living area. These changes were significantly the strongest in the LTLD+mEHT-treated tumors. The body weight loss was similar in all mice treated with any DOX formulation, suggesting no difference in toxicity. In conclusion, LTLD combined with mEHT represents a novel approach for DOX delivery into cancer tissue.


Assuntos
Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias , Camundongos , Animais , Lipossomos , Antígeno Ki-67 , Hipertermia Induzida/métodos , Doxorrubicina/farmacologia , Hipertermia , Linhagem Celular Tumoral , Polietilenoglicóis
2.
Proc Natl Acad Sci U S A ; 117(44): 27528-27539, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33067394

RESUMO

Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the generation of effective antitumor immune responses. Here, we describe a liposomal vaccine carrier that delivers tumor antigens to human CD169/Siglec-1+ antigen-presenting cells using gangliosides as targeting ligands. Ganglioside-liposomes specifically bound to CD169 and were internalized by in vitro-generated monocyte-derived DCs (moDCs) and macrophages and by ex vivo-isolated splenic macrophages in a CD169-dependent manner. In blood, high-dimensional reduction analysis revealed that ganglioside-liposomes specifically targeted CD14+ CD169+ monocytes and Axl+ CD169+ DCs. Liposomal codelivery of tumor antigen and Toll-like receptor ligand to CD169+ moDCs and Axl+ CD169+ DCs led to cytokine production and robust cross-presentation and activation of tumor antigen-specific CD8+ T cells. Finally, Axl+ CD169+ DCs were present in cancer patients and efficiently captured ganglioside-liposomes. Our findings demonstrate a nanovaccine platform targeting CD169+ DCs to drive antitumor T cell responses.


Assuntos
Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Macrófagos/imunologia , Neoplasias/terapia , Vacinação/métodos , Antígenos de Neoplasias/administração & dosagem , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/metabolismo , Gangliosídeos , Humanos , Imunogenicidade da Vacina , Leucócitos Mononucleares , Lipossomos , Macrófagos/metabolismo , Neoplasias/imunologia , Cultura Primária de Células , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Células THP-1 , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Receptor Tirosina Quinase Axl
3.
Mol Pharm ; 19(9): 3057-3074, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35973068

RESUMO

Curcumin nanoformulations for intravenous injection have been developed to offset poor absorption, biotransformation, degradation, and excessive clearance associated with parenteral delivery. This review investigates (1) whether intravenous nanoformulations improve curcumin pharmacokinetics (PK) and (2) whether improved PK yields greater therapeutic efficacy. Standard PK parameters (measured maximum concentration [Cmax], area under the curve [AUC], distribution volume [Vd], and clearance [CL]) of intravenously administered free curcumin in mice and rats were sourced from literature and compared to curcumin formulated in nanoparticles, micelles, and liposomes. The studies that also featured analysis of pharmacodynamics (PD) in murine cancer models were used to determine whether improved PK of nanoencapsulated curcumin resulted in improved PD. The distribution and clearance of free and nanoformulated curcumin were very fast, typically accounting for >80% curcumin elimination from plasma within 60 min. Case-matched analysis demonstrated that curcumin nanoencapsulation generally improved curcumin PK in terms of measured Cmax (n = 27) and AUC (n = 33), and to a lesser extent Vd and CL. However, when the data were unpaired and clustered for comparative analysis, only 5 out of the 12 analyzed nanoformulations maintained a higher relative curcumin concentration in plasma over time compared to free curcumin. Quantitative analysis of the mean plasma concentration of free curcumin versus nanoformulated curcumin did not reveal an overall marked improvement in curcumin PK. No correlation was found between PK and PD, suggesting that augmentation of the systemic presence of curcumin does not necessarily lead to greater therapeutic efficacy.


Assuntos
Curcumina , Animais , Área Sob a Curva , Lipossomos , Camundongos , Micelas , Sistemas de Liberação de Fármacos por Nanopartículas , Ratos
4.
Dermatology ; 237(3): 416-432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33271556

RESUMO

BACKGROUND: A plethora of outcome measurement instruments (OMIs) are being used in port wine stain (PWS) studies. It is currently unclear how valid, responsive, and reliable these are. OBJECTIVES: The aim of this systematic review was to appraise the content validity and other measurement properties of OMIs for PWS treatment to identify the most appropriate instruments and future research priorities. METHODS: This study was performed using the updated Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) methodology and adhered to PRISMA guidelines. Comprehensive searches in Medline and Embase were performed. Studies in which an OMI for PWS patients was developed or its measurement properties were evaluated were included. Two investigators independently extracted data and assessed the quality of included studies and instruments to perform qualitative synthesis of the evidence. RESULTS: In total, 1,034 articles were screened, and 77 full-text articles were reviewed. A total of 8 studies were included that reported on 6 physician-reported OMIs of clinical improvement and 6 parent- or patient-reported OMIs of life impact, of which 3 for health-related quality of life and 1 for perceived stigmatization. Overall, the quality of OMI development was inadequate (63%) or doubtful (37%). Each instrument has undergone a very limited evaluation in PWS patients. No content validity studies were performed. The quality of evidence for content validity was very low (78%), low (15%), or moderate (7%), with sufficient comprehensibility, mostly sufficient comprehensiveness, and mixed relevance. No studies on responsiveness, minimal important change, and cross-cultural validity were retrieved. There was moderate- to very low-quality evidence for sufficient inter-rater reliability for some clinical PWS OMIs. Internal consistency and measurement error were indeterminate in all studies. CONCLUSIONS: There was insufficient evidence to properly guide outcome selection. Additional assessment of the measurement properties of OMIs is needed, preferentially guided by a core domain set tailored to PWS.


Assuntos
Avaliação de Resultados em Cuidados de Saúde , Mancha Vinho do Porto/terapia , Humanos , Reprodutibilidade dos Testes
5.
Artigo em Inglês | MEDLINE | ID: mdl-32540976

RESUMO

Antimicrobial peptides (AMPs) have seen limited clinical use as antimicrobial agents, largely due to issues relating to toxicity, short biological half-life, and lack of efficacy against Gram-negative bacteria. However, the development of novel AMP-nanomedicines, i.e., AMPs entrapped in nanoparticles, has the potential to ameliorate these clinical problems. The authors investigated two novel nanomedicines based on AA139, an AMP currently in development for the treatment of multidrug-resistant Gram-negative infections. AA139 was entrapped in polymeric nanoparticles (PNPs) or lipid-core micelles (MCLs). The antimicrobial activity of AA139-PNP and AA139-MCL was determined in vitro The biodistribution and limiting doses of AA139-nanomedicines were determined in uninfected rats via endotracheal aerosolization. The early bacterial killing activity of the AA139-nanomedicines in infected lungs was assessed in a rat model of pneumonia-septicemia caused by extended-spectrum ß-lactamase-producing Klebsiella pneumoniae In this model, the therapeutic efficacy was determined by once-daily (q24h) administration over 10 days. Both AA139-nanomedicines showed equivalent in vitro antimicrobial activities (similar to free AA139). In uninfected rats, they exhibited longer residence times in the lungs than free AA139 (∼20% longer for AA139-PNP and ∼80% longer for AA139-MCL), as well as reduced toxicity, enabling a higher limiting dose. In rats with pneumonia-septicemia, both AA139-nanomedicines showed significantly improved therapeutic efficacy in terms of an extended rat survival time, although survival of all rats was not achieved. These results demonstrate potential advantages that can be achieved using AMP-nanomedicines. AA139-PNP and AA139-MCL may be promising novel therapeutic agents for the treatment of patients suffering from multidrug-resistant Gram-negative pneumonia-septicemia.


Assuntos
Bacteriemia , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella/tratamento farmacológico , Pneumonia Bacteriana , Proteínas Citotóxicas Formadoras de Poros , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Nanomedicina , Pneumonia Bacteriana/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Ratos , Distribuição Tecidual
6.
Bioconjug Chem ; 31(2): 360-368, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31095372

RESUMO

Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects' plaques.


Assuntos
Aterosclerose/diagnóstico por imagem , Lipossomos/análise , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/análise , Zircônio/análise , Animais , Aorta Abdominal/diagnóstico por imagem , Masculino , Coelhos , Distribuição Tecidual
7.
FASEB J ; 33(8): 9466-9475, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100032

RESUMO

Hepatic fibrosis, characterized by an excessive extracellular matrix (ECM) accumulation, leading to scar-tissue formation is a growing health problem worldwide. Hepatocellular damage due to liver injury triggers inflammation and transdifferentiation of quiescent hepatic stellate cells (HSCs) into proliferative, contractile, and ECM-producing myofibroblasts. Involvement of the Janus kinase (JAK)-2 pathway in the pathogenesis of fibrosis has been reported earlier. However, in this study, we have investigated the effect of selective JAK2 antagonist TG101348 in fibroblasts and inflammatory macrophages and in vivo in an acute carbon tetrachloride-induced liver injury mouse model. In vitro, TG101348 significantly inhibited TGF-ß-induced collagen I expression in murine 3T3 fibroblasts. In human HSCs (LX2 cells), TG101348 potently attenuated TGF-ß-induced contractility and the protein and gene expression of major fibrotic parameters (collagen I, vimentin, and α-smooth muscle actin). In LPS- and IFN-γ-stimulated inflammatory macrophages, TG101348 significantly reduced the NO release and strongly inhibited the expression of inflammatory markers (inducible nitric oxide synthase, C-C motif chemokine ligand 2, IL-1ß, IL-6, and C-C chemokine receptor type 2). In vivo in an acute liver injury mouse model, TG101348 significantly attenuated collagen accumulation and HSC activation. Interestingly, TG101348 drastically inhibited macrophage infiltration and intrahepatic inflammation. Pharmacological inhibition of the JAK2 signaling pathway in activated HSCs and inflammatory macrophages using TG101348 suggests a potential therapeutic approach for the treatment of liver fibrosis.-Akcora, B. O., Dathathri, E., Ortiz-Perez, A., Gabriël, A. V., Storm, G., Prakash, J., Bansal, R. TG101348, a selective JAK2 antagonist, ameliorates hepatic fibrogenesis in vivo.


Assuntos
Cirrose Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pirrolidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Células 3T3 , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Células Hep G2 , Humanos , Cirrose Hepática/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Óxidos de Nitrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
8.
J Immunol ; 201(10): 2969-2976, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333124

RESUMO

Treating cancer with vaccines has been a challenge. In this study, we introduce a novel Ag delivery platform for cancer vaccines that delivers an encapsulated Ag to splenic marginal zone B (MZ-B) cells via the aid of a PEGylated liposome (PL) system. Splenic MZ-B cells have recently attracted interest as alternative APCs. In mice, preimmunization with empty (no Ag encapsulation) PLs triggered the efficient delivery of a subsequent dose of Ag-containing PLs, injected 3 d later, to the spleen compared with a single dose of Ag-containing PLs. In addition, immunization with empty PLs allowed three subsequent sequential injections of OVA-PLs to efficiently induce a CTL response against OVA-expressing murine thymoma (EG7-OVA) cells and resulted in in vivo growth inhibition of subsequently inoculated EG7-OVA cells. However, these sequential treatments require repeated immunizations to achieve their antitumor effect. Therefore, to improve the antitumor effect of our novel vaccine system, an adjuvant, α-galactosylceramide (αGC), was incorporated into the OVA-PLs (αGC/OVA-PLs). As expected, the incorporation of αGC reduced the required number of immunizations with OVA-PLs to the point that a single immunization treatment with empty PLs and an injection of αGC/OVA-PL efficiently triggered a potent CTL induction, resulting in a rejection of the development and a suppression of the growth of tumors that had already developed s.c. Results of this study indicate that a novel Ag delivery platform that grants efficient Ag delivery to splenic MZ-B cells shows promise as a therapeutic modality for conquering tumor growth and/or progression.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Linfócitos B/imunologia , Vacinas Anticâncer/administração & dosagem , Lipossomos/imunologia , Baço/imunologia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Citotoxicidade Imunológica/imunologia , Lipossomos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Acta Pharmacol Sin ; 41(7): 954-958, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32555445

RESUMO

Cancer nanomedicines have shown promise in combination immunotherapy, thus far mostly preclinically but also already in clinical trials. Combining nanomedicines with immunotherapy aims to reinforce the cancer-immunity cycle, via potentiating key steps in the immune reaction cascade, namely antigen release, antigen processing, antigen presentation, and immune cell-mediated killing. Combination nano-immunotherapy can be realized via three targeting strategies, i.e., by targeting cancer cells, targeting the tumor immune microenvironment, and targeting the peripheral immune system. The clinical potential of nano-immunotherapy has recently been demonstrated in a phase III trial in which nano-albumin paclitaxel (Abraxane®) was combined with atezolizumab (Tecentriq®) for the treatment of patients suffering from advanced triple-negative breast cancer. In the present paper, besides strategies and initial (pre)clinical success stories, we also discuss several key challenges in nano-immunotherapy. Taken together, nanomedicines combined with immunotherapy are gaining significant attention, and it is anticipated that they will play an increasingly important role in clinical cancer therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Nanomedicina , Neoplasias/terapia , Humanos , Neoplasias/imunologia , Neoplasias/patologia
10.
FASEB J ; 32(2): 969-978, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29066614

RESUMO

Tumor-associated macrophages (TAMs) are the key effector cells in the tumor microenvironment and induce neoangiogenesis, matrix remodeling, and metastasis while suppressing the tumor immune system. These protumoral macrophages display an M2 phenotype induced by IL-4 and IL-13 cytokines. In this study, we hypothesized that the inhibition of the signal transducer and activator of transcription 6 (Stat6) pathway, a common downstream signaling pathway of IL-4 and IL-13, may be an interesting strategy by which to inhibit TAM differentiation and, thus, their protumorigenic activities. In vitro inhibition of the Stat6 pathway by using small interfering RNA or the pharmacologic inhibitor, AS1517499, inhibited the differentiation of mouse RAW264.7 macrophages into the M2 phenotype, as demonstrated by the reduction of Arg-1 (arginase-1) and Mrc-1 (mannose receptor 1) expression and arginase activity. In vivo, AS1517499 significantly attenuated tumor growth and early liver metastasis in an orthotopic 4T1 mammary carcinoma mouse model. Furthermore, in another experiment, we observed an increase in the intrahepatic mRNA expression of F4/80 (EGF-like module-containing mucin-like hormone receptor-like 1; total macrophages) and M2 macrophage markers [ Ym-1 (chitinase 3-like protein 3) and Mrc-1] and metastatic niche markers [ Mmp-2 (matrix metalloproteinase-2), Postn (periostin), and Cd34] in mice with increasing growth of primary tumors. Of interest, these markers were found to be reduced after treatment with AS1517499. In summary, inhibition of the Stat6 pathway in TAMs is a vital therapeutic approach to attenuate tumor growth and metastasis by inhibiting TAM-induced protumorigenic and prometastatic activities.-Binnemars-Postma, K., Bansal, R., Storm, G., Prakash, J. Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer.


Assuntos
Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Proteínas de Neoplasias/metabolismo , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Feminino , Macrófagos/patologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Pirimidinas/farmacologia , Células RAW 264.7
11.
Nanotechnology ; 30(26): 264001, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30836341

RESUMO

Hypoxia is a characteristic feature of solid tumors and an important cause of resistance to radiotherapy. Hypoxic cell radiosensitizers have been shown to increase radiotherapy efficacy, but dose-limiting side effects prevent their widespread use in the clinic. We propose the encapsulation of hypoxic cell radiosensitizers in temperature-sensitive liposomes (TSL) to target the radiosensitizers specifically to tumors and to avoid unwanted accumulation in healthy tissues. The main objective of the present study is to develop and characterize TSL loaded with the radiosensitizer pimonidazole (PMZ) and to evaluate the in vitro efficacy of free PMZ and PMZ encapsulated in TSL in combination with hyperthermia and radiotherapy. PMZ was actively loaded into TSL at different drug/lipid ratios, and the physicochemical characteristics and the stability of the resulting TSL-PMZ were evaluated. PMZ release was determined at 37 °C and 42 °C in HEPES buffer saline and fetal bovine serum. The concentration-dependent radiosensitizing effect of PMZ was investigated by exposing FaDu cells to different PMZ concentrations under hypoxic conditions followed by exposure to ionizing irradiation. The efficacy of TSL-PMZ in combination with hyperthermia and radiotherapy was determined in vitro, assessing cell survival and DNA damage by means of the clonogenic assay and histone H2AX phosphorylation, respectively. All TSL-PMZ formulations showed high encapsulation efficiencies and were stable for 30 d upon storage at 4 °C and 20 °C. Fast PMZ release was observed at 42 °C, regardless of the drug/lipid ratio. Increasing the PMZ concentration significantly enhanced the effect of ionizing irradiation. Pre-heated TSL-PMZ in combination with radiotherapy caused a 14.3-fold increase in cell death as compared to radiotherapy treatment alone. In conclusion, our results indicate that TSL-PMZ in combination with hyperthermia can assist in improving the efficacy of radiotherapy under hypoxic conditions.


Assuntos
Quimiorradioterapia/métodos , Hipertermia Induzida/métodos , Neoplasias Hipofaríngeas/metabolismo , Nitroimidazóis/farmacologia , Radiossensibilizantes/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Neoplasias Hipofaríngeas/terapia , Lipossomos/química , Temperatura
12.
Nanomedicine ; 17: 106-118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677498

RESUMO

Hepatic cirrhosis is a growing health problem with increasing mortality worldwide. So far, there is a lack of early diagnosis and no clinical therapy is approved for the treatment. In this study, we developed a novel theranostic nanomedicine by targeting relaxin (RLX) that is known to possess potent anti-fibrotic properties but simultaneously has poor pharmacokinetics and detrimental off-target effects. We conjugated RLX to PEGylated superparamagnetic iron-oxide nanoparticles (RLX-SPIONs) and examined hepatic stellate cells (HSCs) specific binding/uptake. Thereafter, we assessed the therapeutic efficacy of RLX-SPIONs on human HSCs in vitro and in vivo in CCl4-induced liver cirrhosis mouse model. RLX-SPIONs showed specific binding and uptake in TGFß-activated HSCs, and inhibited TGFß-induced HSCs differentiation, migration and contraction. In vivo, RLX-SPIONs strongly attenuated cirrhosis and showed enhanced contrast in MR imaging. Altogether, this study presents RLX-SPIONs as a novel theranostic nanomedicine that provides new opportunities for the diagnosis and treatment of liver cirrhosis.


Assuntos
Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/tratamento farmacológico , Nanopartículas de Magnetita/uso terapêutico , Relaxina/uso terapêutico , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Masculino , Camundongos Endogâmicos BALB C , Relaxina/análogos & derivados , Relaxina/farmacocinética , Nanomedicina Teranóstica
13.
Proc Natl Acad Sci U S A ; 113(44): E6731-E6740, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791119

RESUMO

Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library's nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe-/-) mouse model of atherosclerosis, we quantitatively evaluated the library's immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases.


Assuntos
Aterosclerose/tratamento farmacológico , Aterosclerose/imunologia , Imunoterapia , Nanopartículas/química , Animais , Anti-Inflamatórios , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Autorradiografia , Benzoatos/agonistas , Benzoatos/química , Benzilaminas/agonistas , Benzilaminas/química , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas HDL/química , Lipoproteínas HDL/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Molecular , Nanomedicina , Nanopartículas/metabolismo , Tomografia por Emissão de Pósitrons/métodos , RNA Mensageiro/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 804-818, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29217140

RESUMO

Quiescent hepatic stellate cells (HSCs), in response to liver injury, undergo characteristic morphological transformation into proliferative, contractile and ECM-producing myofibroblasts. In this study, we investigated the implication of canonical Wnt signaling pathway in HSCs and liver fibrogenesis. Canonical Wnt signaling pathway activation and inhibition using ß-catenin/CBP inhibitor ICG001 was examined in-vitro in TGFß-activated 3T3, LX2, primary human HSCs, and in-vivo in CCl4-induced acute liver injury mouse model. Fibroblasts-conditioned medium studies were performed to assess the Wnt-regulated paracrine factors involved in crosstalk between HSCs-macrophages and HSCs-endothelial cells. Canonical Wnt signaling pathway components were significantly up-regulated in-vitro and in-vivo. In-vitro, ICG-001 significantly inhibited fibrotic parameters, 3D-collagen contractility and wound healing. Conditioned medium induced fibroblasts-mediated macrophage and endothelial cells activation was significantly inhibited by ICG-001. In-vivo, ICG-001 significantly attenuated collagen accumulation and HSC activation. Interestingly, ICG-001 drastically inhibited macrophage infiltration, intrahepatic inflammation and angiogenesis. We further analyzed the paracrine factors involved in Wnt-mediated effects and found CXCL12 was significantly suppressed both in-vitro and in-vivo following Wnt inhibition. Wnt-regulated CXCL12 secretion from activated HSCs potentiated macrophage infiltration and activation, and angiogenesis. Pharmacological inhibition of canonical Wnt signaling pathway via suppression of stromal CXCL12 suggests a potential therapeutic approach targeting activated HSCs in liver fibrosis.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Proteína de Ligação a CREB/antagonistas & inibidores , Cirrose Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Pirimidinonas/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores , Células 3T3 , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Cultivadas , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirimidinonas/farmacologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
15.
Rheumatology (Oxford) ; 57(4): 737-747, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361119

RESUMO

Objectives: RA is a chronic autoimmune disease leading to progressive destruction of cartilage and bone. RA patients show elevated IL-22 levels and the amount of IL-22-producing Th cells positively correlates with the extent of erosive disease, suggesting a role for this cytokine in RA pathogenesis. The purpose of this study was to determine the feasibility of SPECT/CT imaging with 111In-labelled anti-fibroblast activation protein antibody (28H1) to monitor the therapeutic effect of neutralizing IL-22 in experimental arthritis. Methods: Mice (six mice/group) with CIA received anti-IL-22 or isotype control antibodies. To monitor therapeutic effects after treatment, SPECT/CT images were acquired 24 h after injection of 111In-28H1. Imaging results were compared with macroscopic, histologic and radiographic arthritis scores. Results: Neutralizing IL-22 before CIA onset effectively prevented arthritis development, reaching a disease incidence of only 50%, vs 100% in the control group. SPECT imaging showed significantly lower joint tracer uptake in mice treated early with anti-IL-22 antibodies compared with the control-treated group. Reduction of disease activity in those mice was confirmed by macroscopic, histological and radiographic pathology scores. However, when treatment was initiated in a later phase of CIA, progression of joint pathology could not be prevented. Conclusion: These findings suggest that IL-22 plays an important role in CIA development, and neutralizing this cytokine seems an attractive new strategy in RA treatment. Most importantly, SPECT/CT imaging with 111In-28H1 can be used to specifically monitor therapy responses, and is potentially more sensitive in disease monitoring than the gold standard method of macroscopic arthritis scoring.


Assuntos
Artrite/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Gelatinases/genética , Regulação da Expressão Gênica , Interleucinas/genética , Proteínas de Membrana/genética , RNA Mensageiro/genética , Serina Endopeptidases/genética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Artrite/tratamento farmacológico , Artrite/genética , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Colágeno/toxicidade , Modelos Animais de Doenças , Endopeptidases , Gelatinases/biossíntese , Imuno-Histoquímica , Interleucinas/biossíntese , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos DBA , Reação em Cadeia da Polimerase em Tempo Real , Serina Endopeptidases/biossíntese , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Interleucina 22
16.
Int J Mol Sci ; 18(5)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471401

RESUMO

In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are involved in inflammatory and malignant processes, activated M2 macrophages are more involved in the wound-healing processes occurring in tumors. Tumor-associated macrophages (TAM) display M2 macrophage characteristics and support tumor growth and metastasis by matrix remodeling, neo-angiogenesis, and suppressing local immunity. Due to their detrimental role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer may prove to be beneficial in the treatment of cancer. Due to the plastic nature of macrophages, their activities may be altered to inhibit tumor growth. In this review, we will discuss the therapeutic options for the modulation and targeting of TAM. Different therapeutic strategies to deplete, inhibit recruitment of, or re-educate TAM will be discussed. Current strategies for the targeting of TAM using nanomedicine are reviewed. Passive targeting using different nanoparticle systems is described. Since TAM display a number of upregulated surface proteins compared to non-TAM, specific targeting using targeting ligands coupled to nanoparticles is discussed in detail.


Assuntos
Macrófagos/imunologia , Nanomedicina/métodos , Neoplasias/terapia , Animais , Humanos , Ativação de Macrófagos , Nanopartículas/química , Nanopartículas/classificação , Nanopartículas/uso terapêutico
17.
Drug Discov Today Technol ; 20: 41-48, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27986222

RESUMO

The blood-brain barrier (BBB) limits drug delivery to the central nervous system. When combined with microbubbles, ultrasound can transiently permeate blood vessels in the brain. This approach, which can be referred to as sonoporation or sonopermeabilization, holds significant promise for shuttling large therapeutic molecules, such as antibodies, growth factors and nanomedicine formulations, across the BBB. We here describe the basic principles of BBB permeation using ultrasound and microbubbles, and we summarize several (pre-) clinical studies showing the potential of BBB opening for improving the treatment of cancer and neurodegenerative disorders.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Ondas Ultrassônicas , Animais , Encéfalo/irrigação sanguínea , Humanos , Permeabilidade
18.
Prostate ; 75(8): 815-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663076

RESUMO

BACKGROUND: The inflammatory tumor microenvironment, and more specifically the tumor-associated macrophages, plays an essential role in the development and progression of prostate cancer towards metastatic bone disease. Tumors are often characterized by a leaky vasculature, which - combined with the prolonged circulation kinetics of liposomes - leads to efficient tumor localization of these drug carriers, via the so-called enhanced permeability and retention (EPR) -effect. In this study, we evaluated the utility of targeted, liposomal drug delivery of the glucocorticoid dexamethasone in a model of prostate cancer bone metastases. METHODS: Tumor-bearing Balb-c nu/nu mice were treated intravenously with 0.2-1.0-5.0 mg/kg/week free- and liposomal DEX for 3-4 weeks and tumor growth was monitored by bioluminescent imaging. RESULTS: Intravenously administered liposomes localize efficiently to bone metastases in vivo and treatment of established bone metastases with (liposomal) dexamethasone resulted in a significant inhibition of tumor growth up to 26 days after initiation of treatment. Furthermore, 1.0 mg/kg liposomal dexamethasone significantly outperformed 1.0 mg/kg free dexamethasone, and was found to be well-tolerated at clinically-relevant dosages that display potent anti-tumor efficacy. CONCLUSIONS: Liposomal delivery of the glucocorticoid dexamethasone inhibits the growth of malignant bone lesions. We believe that liposomal encapsulation of dexamethasone offers a promising new treatment option for advanced, metastatic prostate cancer which supports further clinical evaluation.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Dexametasona/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias da Próstata/tratamento farmacológico , Animais , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Humanos , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/patologia , Ratos , Ratos Sprague-Dawley
19.
Biochem Biophys Res Commun ; 468(3): 490-7, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26182876

RESUMO

Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Hipersensibilidade a Drogas/imunologia , Medicamentos Genéricos/efeitos adversos , Lipossomos/efeitos adversos , Nanocápsulas/efeitos adversos , Hipersensibilidade a Drogas/etiologia , Substituição de Medicamentos/efeitos adversos , Lipossomos/imunologia , Equivalência Terapêutica
20.
Adv Funct Mater ; 25(1): 36-43, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25729344

RESUMO

Efficient and safe drug delivery across the blood-brain barrier (BBB) remains to be one of the major challenges of biomedical and (nano-) pharmaceutical research. Here, we show that poly(butyl cyanoacrylate)-based microbubbles (MB), carrying ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles within their shell, can be used to mediate and monitor BBB permeation. Upon exposure to transcranial ultrasound pulses, USPIO-MB are destroyed, resulting in acoustic forces inducing vessel permeability. At the same time, USPIO are released from the MB shell, they extravasate across the permeabilized BBB and they accumulate in extravascular brain tissue, thereby providing non-invasive R2*-based magnetic resonance imaging information on the extent of BBB opening. Quantitative changes in R2* relaxometry were in good agreement with 2D and 3D microscopy results on the extravascular deposition of the macromolecular model drug FITC-dextran into the brain. Such theranostic materials and methods are considered to be useful for mediating and monitoring drug delivery across the BBB, and for enabling safe and efficient treatment of CNS disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa