Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chem Res Toxicol ; 32(9): 1733-1736, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31203605

RESUMO

Research in toxicology relies on in vitro models such as cell lines. These living models are prone to change and may be described in publications with insufficient information or quality control testing. This article sets out recommendations to improve the reliability of cell-based research.


Assuntos
Técnicas de Cultura de Células/normas , Linhagem Celular , Modelos Biológicos , Animais , Autenticação de Linhagem Celular , Humanos , Controle de Qualidade , Reprodutibilidade dos Testes , Toxicologia/métodos , Toxicologia/normas
2.
Int J Cancer ; 132(11): 2510-9, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23136038

RESUMO

Continuous human cell lines have been used extensively as models for biomedical research. In working with these cell lines, researchers are often unaware of the risk of cross-contamination and other causes of misidentification. To reduce this risk, there is a pressing need to authenticate cell lines, comparing the sample handled in the laboratory to a previously tested sample. The American Type Culture Collection Standards Development Organization Workgroup ASN-0002 has developed a Standard for human cell line authentication, recommending short tandem repeat (STR) profiling for authentication of human cell lines. However, there are known limitations to the technique when applied to cultured samples, including possible genetic drift with passage. In our study, a dataset of 2,279 STR profiles from four cell banks was used to assess the effectiveness of the match criteria recommended within the Standard. Of these 2,279 STR profiles, 1,157 were grouped into sets of related cell lines-duplicate holdings, legitimately related samples or misidentified cell lines. Eight core STR loci plus amelogenin were used to unequivocally authenticate 98% of these related sets. Two simple match algorithms each clearly discriminated between related and unrelated samples, with separation between related samples at ≥80% match and unrelated samples at <50% match. A small degree of overlap was noted at 50-79% match, mostly from cell lines known to display variable STR profiles. These match criteria are recommended as a simple and effective way to interpret results from STR profiling of human cell lines.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Técnicas de Genotipagem/normas , Repetições de Microssatélites/genética , Linhagem Celular , Humanos , Reação em Cadeia da Polimerase
3.
J Mol Diagn ; 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544360

RESUMO

Microsatellite instability (MSI) is an evolving biomarker for cancer detection and treatment. MSI was first used to identify patients with Lynch syndrome, a hereditary form of colorectal cancer (CRC), but has recently become indispensable in predicting patient response to immunotherapy. To address the need for pan-cancer MSI detection, a new multiplex assay was developed that uses novel long mononucleotide repeat (LMR) markers to improve sensitivity. A total of 469 tumor samples from 20 different cancer types, including 319 from patients with Lynch syndrome, were tested for MSI using the new LMR MSI Analysis System. Results were validated by using deficient mismatch repair (dMMR) status according to immunohistochemistry as the reference standard and compared versus the Promega pentaplex MSI panel. The sensitivity of the LMR panel for detection of dMMR status by immunohistochemistry was 99% for CRC and 96% for non-CRC. The overall percent agreement between the LMR and Promega pentaplex panels was 99% for CRC and 89% for non-CRC tumors. An increased number of unstable markers and the larger size shifts observed in dMMR tumors using the LMR panel increased confidence in MSI determinations. The LMR MSI Analysis System expands the spectrum of cancer types in which MSI can be accurately detected.

4.
Int J Radiat Biol ; 97(8): 1140-1151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33720813

RESUMO

PURPOSE: Estimating cancer risk associated with interplanetary space travel is complicated. Human exposure data to high atomic number, high-energy (HZE) radiation is lacking, so data from low linear energy transfer (low-LET) γ-ray radiation is used in risk models, with the assumption that HZE and γ-ray radiation have comparable biological effects. This assumption has been challenged by reports indicating that HZE radiation might produce more aggressive tumors. The goal of this research is to test whether high-LET HZE radiation induced tumors are more aggressive. MATERIALS AND METHODS: Murine models of mammary and liver cancer were used to compare the impact of exposure to 0.2Gy of 300MeV/n silicon ions, 3 Gy of γ-rays or no radiation. Numerous measures of tumor aggressiveness were assessed. RESULTS: For the mammary cancer models, there was no significant change in the tumor latency or metastasis in silicon-irradiated mice compared to controls. For the liver cancer models, we observed an increase in tumor incidence but not tumor aggressiveness in irradiated mice. CONCLUSION: Tumors in the HZE-irradiated mice were not more aggressive than those arising from exposure to low-LET γ-rays or spontaneously. Thus, enhanced aggressiveness does not appear to be a uniform characteristic of all tumors in HZE-irradiated animals.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Neoplasias Mamárias Experimentais/patologia , Animais , Relação Dose-Resposta à Radiação , Feminino , Humanos , Transferência Linear de Energia , Camundongos
5.
Anal Biochem ; 392(1): 45-53, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19464993

RESUMO

Protein arrays hold great promise for proteome-scale analysis of protein-protein interaction networks, but the technical challenges have hindered their adoption by proteomics researchers. The crucial issue of design and fabrication of protein arrays have been addressed in several studies, but the detection strategies used for identifying protein-protein interactions have received little attention. In this study, we evaluated six different detection strategies to identify four different protein-protein interaction pairs. We discuss each detection approach in terms of signal-to-background (S/B) ratio, ease of use, and adaptability to high-throughput format. Protein arrays for this study were made by expressing both the bait proteins (proteins captured at the surface) and prey proteins (probes) in cell-free rabbit reticulocyte lysate (RRL) systems. Bait proteins were expressed as HaloTag fusions that allow covalent capture on a HaloTag ligand-coated glass without any prior protein purification step. Prey proteins were expressed and modified with either tags (protein or peptides) or labels (fluorescent or radiometric) for detection. This simple method for creating protein arrays in combination with our analyses of several detection strategies should increase the usefulness of protein array technologies.


Assuntos
Análise Serial de Proteínas/métodos , Proteínas/análise , Proteínas/metabolismo , Animais , Sistema Livre de Células , Ligação Proteica , Coelhos
7.
Anal Chim Acta ; 980: 41-49, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28622802

RESUMO

Forensic DNA analysis requires several steps, including DNA extraction, PCR amplification, and separation of PCR fragments. Intuitively, there are numerous situations where it would be beneficial to speed up the overall DNA analysis process; in this work, we focus on the most time-consuming component in the analysis pipeline, namely the polymerase chain reaction (PCR). Primers were specially designed to target 10 human genomic loci, all yielding amplicons shorter than 350 bases, for ease of downstream integration with on-board microchip electrophoresis. Primer concentrations were adjusted specifically for microdevice amplification, resulting in well-balanced short tandem repeat (STR) profiles. Furthermore, studies were performed to push the limits of the DNA polymerase to achieve rapid, multiplexed PCR on various substrates, including transparent and black polyethylene terephthalate (Pe), and with two distinct adhesives, toner and heat sensitive adhesive (HSA). Rapid STR-based multiplexed PCR amplification is demonstrated in 15 min on a Pe microdevice using a custom-built system for fluid flow control and thermocycling for the full 10-plex, and in 10 min for a smaller multiplex consisting of six core CODIS loci plus Amelogenin with amplicons shorter than 200bp. Lastly, preliminary studies indicate the capability of this PCR microdevice platform to be integrated with both upstream DNA extraction, and downstream microchip electrophoresis. This, coupled to the use of reagents that are compatible with lyophilization (lyo-compatible) for PCR, represents the potential for a fully integrated rotationally-driven microdevice for complete forensic DNA analysis.


Assuntos
Eletroforese em Microchip , Genética Forense , Repetições de Microssatélites , Técnicas de Amplificação de Ácido Nucleico , DNA , Humanos , Reação em Cadeia da Polimerase
8.
Forensic Sci Int Genet ; 23: 166-177, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27206225

RESUMO

Quantification of the total amount of human DNA isolated from a forensic evidence item is crucial for DNA normalization prior to short tandem repeat (STR) DNA analysis and a federal quality assurance standard requirement. Previous commercial quantification methods determine the total human DNA and total human male DNA concentrations, but provide limited information about the condition of the DNA sample. The PowerQuant(®) System includes targets for quantification of total human and total human male DNA as well as targets for evaluating whether the human DNA is degraded and/or PCR inhibitors are present in the sample. A developmental validation of the PowerQuant(®) System was completed, following SWGDAM Validation Guidelines, to evaluate the assay's specificity, sensitivity, precision and accuracy, as well as the ability to detect degraded DNA or PCR inhibitors. In addition to the total human DNA and total human male DNA concentrations in a sample, data from the degradation target and internal PCR control (IPC) provide a forensic DNA analyst meaningful information about the quality of the isolated human DNA and the presence of PCR inhibitors in the sample that can be used to determine the most effective workflow and assist downstream interpretation.


Assuntos
Impressões Digitais de DNA , DNA/análise , Repetições de Microssatélites , Reação em Cadeia da Polimerase/instrumentação , Animais , Cromossomos Humanos Y , Degradação Necrótica do DNA , Humanos , Masculino , Grupos Raciais/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie
9.
Forensic Sci Int Genet ; 24: 86-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27347657

RESUMO

Current forensic DNA analysis predominantly involves identification of human donors by analysis of short tandem repeats (STRs) using Capillary Electrophoresis (CE). Recent developments in Massively Parallel Sequencing (MPS) technologies offer new possibilities in analysis of STRs since they might overcome some of the limitations of CE analysis. In this study 17 STRs and Amelogenin were sequenced in high coverage using a prototype version of the Promega PowerSeq™ system for 297 population samples from the Netherlands, Nepal, Bhutan and Central African Pygmies. In addition, 45 two-person mixtures with different minor contributions down to 1% were analysed to investigate the performance of this system for mixed samples. Regarding fragment length, complete concordance between the MPS and CE-based data was found, marking the reliability of MPS PowerSeq™ system. As expected, MPS presented a broader allele range and higher power of discrimination and exclusion rate. The high coverage sequencing data were used to determine stutter characteristics for all loci and stutter ratios were compared to CE data. The separation of alleles with the same length but exhibiting different stutter ratios lowers the overall variation in stutter ratio and helps in differentiation of stutters from genuine alleles in mixed samples. All alleles of the minor contributors were detected in the sequence reads even for the 1% contributions, but analysis of mixtures below 5% without prior information of the mixture ratio is complicated by PCR and sequencing artefacts.


Assuntos
Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Análise de Sequência de DNA , África Central , Amelogenina/genética , Ásia Ocidental , Humanos , Países Baixos , Grupos Raciais/genética
10.
Forensic Sci Int Genet ; 21: 134-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774099

RESUMO

The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System.


Assuntos
Impressões Digitais de DNA/instrumentação , Ciências Forenses/instrumentação , Animais , Cromossomos Humanos Y , DNA/análise , DNA/genética , Impressões Digitais de DNA/métodos , Impressões Digitais de DNA/normas , Ciências Forenses/métodos , Ciências Forenses/normas , Humanos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Especificidade da Espécie
11.
Forensic Sci Int Genet ; 19: 172-179, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26240968

RESUMO

Capillary electrophoresis (CE) and multiplex amplification with fluorescent tagging have been routinely used for STR typing in forensic genetics. However, CE-based methods restrict the number of markers that can be multiplexed simultaneously and cannot detect any intra-repeat variations within STRs. Several studies already have indicated that massively parallel sequencing (MPS) may be another potential technology for STR typing. In this study, the prototype PowerSeq(™) Auto System (Promega) containing the 23 STR loci and amelogenin was evaluated using Illumina MiSeq. Results showed that single source complete profiles could be obtained using as little as 62 pg of input DNA. The reproducibility study showed that the profiles generated were consistent among multiple typing experiments for a given individual. The mixture study indicated that partial STR profiles of the minor contributor could be detected up to 19:1 mixture. The mock forensic casework study showed that full or partial profiles could be obtained from different types of single source and mixture samples. These studies indicate that the PowerSeq Auto System and the Illumina MiSeq can generate concordant results with current CE-based methods. In addition, MPS-based systems can facilitate mixture deconvolution with the detection of intra-repeat variations within length-based STR alleles.


Assuntos
Genética Forense , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Repetições de Microssatélites/genética , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
12.
Forensic Sci Int Genet ; 16: 38-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25528025

RESUMO

STR typing in forensic genetics has been performed traditionally using capillary electrophoresis (CE). However, CE-based method has some limitations: a small number of STR loci can be used; stutter products, dye artifacts and low level alleles. Massively parallel sequencing (MPS) has been considered a viable technology in recent years allowing high-throughput coverage at a relatively affordable price. Some of the CE-based limitations may be overcome with the application of MPS. In this study, a prototype multiplex STR System (Promega) was amplified and prepared using the TruSeq DNA LT Sample Preparation Kit (Illumina) in 24 samples. Results showed that the MinElute PCR Purification Kit (Qiagen) was a better size selection method compared with recommended diluted bead mixtures. The library input sensitivity study showed that a wide range of amplicon product (6-200ng) could be used for library preparation without apparent differences in the STR profile. PCR sensitivity study indicated that 62pg may be minimum input amount for generating complete profiles. Reliability study results on 24 different individuals showed that high depth of coverage (DoC) and balanced heterozygote allele coverage ratios (ACRs) could be obtained with 250pg of input DNA, and 62pg could generate complete or nearly complete profiles. These studies indicate that this STR multiplex system and the Illumina MiSeq can generate reliable STR profiles at a sensitivity level that competes with current widely used CE-based method.


Assuntos
Impressões Digitais de DNA/métodos , Genética Forense/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/métodos , DNA/análise , DNA/genética , Eletroforese Capilar/métodos , Frequência do Gene , Humanos , Manejo de Espécimes
13.
PLoS One ; 10(8): e0132727, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252492

RESUMO

Microsatellite instability (MSI) occurs in over 90% of Lynch syndrome cancers and is considered a hallmark of the disease. MSI is an early event in colon tumor development, but screening polyps for MSI remains controversial because of reduced sensitivity compared to more advanced neoplasms. To increase sensitivity, we investigated the use of a novel type of marker consisting of long mononucleotide repeat (LMR) tracts. Adenomas from 160 patients, ranging in age from 29-55 years old, were screened for MSI using the new markers and compared with current marker panels and immunohistochemistry standards. Overall, 15 tumors were scored as MSI-High using the LMRs compared to 9 for the NCI panel and 8 for the MSI Analysis System (Promega). This difference represents at least a 1.7-fold increase in detection of MSI-High lesions over currently available markers. Moreover, the number of MSI-positive markers per sample and the size of allelic changes were significantly greater with the LMRs (p = 0.001), which increased confidence in MSI classification. The overall sensitivity and specificity of the LMR panel for detection of mismatch repair deficient lesions were 100% and 96%, respectively. In comparison, the sensitivity and specificity of the MSI Analysis System were 67% and 100%; and for the NCI panel, 75% and 97%. The difference in sensitivity between the LMR panel and the other panels was statistically significant (p<0.001). The increased sensitivity for detection of MSI-High phenotype in early colorectal lesions with the new LMR markers indicates that MSI screening for the early detection of Lynch syndrome might be feasible.


Assuntos
Neoplasias Colorretais/genética , Detecção Precoce de Câncer/métodos , Instabilidade de Microssatélites , Adulto , Alelos , Biomarcadores Tumorais/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/genética , Sensibilidade e Especificidade
14.
Forensic Sci Int Genet ; 9: 169-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24528595

RESUMO

The PowerPlex(®) 21 System is a STR multiplex that has been optimized for casework samples while still being capable of database workflows including direct amplification. The loci included in the multiplex offer increasing overlap with core loci used in different countries and regions throughout the world. The PowerPlex(®) 21 System contains D1S1656, D2S1338, D3S1358, D5S818, D6S1043, D7S820, D8S1179, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, Amelogenin, CSF1PO, FGA, Penta D, Penta E, TH01, TPOX, and vWA. These loci represent all 13 core CODIS loci in addition to loci commonly used in Asia and Europe. A developmental validation study was completed to document performance capabilities and limitations of the PowerPlex(®) 21 System. Data from this validation work served as the basis for the following conclusions: genotyping of single-source samples was reliable across a range of template DNA concentrations with >95% alleles called at 50 pg. Direct amplification of samples from FTA(®) storage cards was successfully performed using the reagents provided with the system and modified cycling protocols provided in the technical manual. Mixture analysis showed that over 95% of minor alleles were detected at 1:9 ratios. Reaction conditions including volume and annealing temperature as well as the concentrations of primers, DNA polymerase, magnesium, and Master Mix were shown to be optimal and able to withstand moderate variations without affecting system performance. Reproducible results were generated by different users at different sites. Finally, concordance studies showed consistent results when comparing the PowerPlex(®) 21 System with other commercially available STR-genotyping systems.


Assuntos
Impressões Digitais de DNA/métodos , DNA/genética , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/instrumentação , Animais , Candida albicans/genética , Gatos/genética , Bovinos/genética , Galinhas/genética , Cervos/genética , Cães/genética , Eletroforese Capilar , Corantes Fluorescentes , Marcadores Genéticos , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Cavalos/genética , Humanos , Camundongos/genética , Coelhos/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Suínos/genética
15.
Forensic Sci Int Genet ; 13: 195-205, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25178681

RESUMO

The PowerPlex(®) ESI 16 Fast, ESI 17 Fast, ESX 16 Fast, and ESX 17 Fast Systems represent faster cycling versions (50min or less) of the PowerPlex(®) ESI and ESX Systems released by Promega in 2009 to accommodate the ENFSI and EDNAP groups' call for new STR multiplexes for Europe. In addition to amplification of purified DNA samples, these new faster cycling systems allow for direct amplification from single-source blood and buccal samples deposited on FTA(®) and nonFTA paper as well as from SwabSolution™ extracts of buccal swabs without the need for purification and quantitation. There are no changes to the autosomal primer pair sequences in the PowerPlex(®) ESI Fast and ESX Fast Systems compared to the original multiplexes, and full concordance at all autosomal loci and amelogenin was observed with data generated previously with the original PowerPlex(®) ESI and ESX Systems. This paper describes the developmental validation study performed on these new fast systems following guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM) and those of the DNA Advisory Board (DAB). Validation data demonstrate that these systems are sensitive for detecting low levels of DNA while also being capable of generating robust profiles from the high amount of input DNA present in direct-amplification samples. These systems are also tolerant to both high concentrations of PCR inhibitors as well as to slight variations in the final concentration of master mix and primer pair present in the amplification reaction that might be encountered due to pipetting error. The results of this validation study demonstrate that these systems may be used on multiple thermal cyclers and capillary electrophoresis platforms.


Assuntos
Impressões Digitais de DNA , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/instrumentação , Animais , Degradação Necrótica do DNA , Eletroforese Capilar , Humanos , Masculino , Reprodutibilidade dos Testes , Especificidade da Espécie , Manejo de Espécimes/métodos
16.
Forensic Sci Int Genet ; 12: 69-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24905335

RESUMO

The original CODIS database based on 13 core STR loci has been overwhelmingly successful for matching suspects with evidence. Yet there remain situations that argue for inclusion of more loci and increased discrimination. The PowerPlex(®) Fusion System allows simultaneous amplification of the following loci: Amelogenin, D3S1358, D1S1656, D2S441, D10S1248, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, D21S11, D7S820, D5S818, TPOX, DYS391, D8S1179, D12S391, D19S433, FGA, and D22S1045. The comprehensive list of loci amplified by the system generates a profile compatible with databases based on either the expanded CODIS or European Standard Set (ESS) requirements. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the PowerPlex(®) Fusion System across a number of variables. Consistent and high-quality results were compiled using data from 12 separate forensic and research laboratories. The results verify that the PowerPlex(®) Fusion System is a robust and reliable STR-typing multiplex suitable for human identification.


Assuntos
Bases de Dados Genéticas , Genética Forense , Humanos , Repetições de Microssatélites
17.
Methods Mol Biol ; 963: 341-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23296621

RESUMO

Short tandem repeat (STR) typing is a standard procedure used in many laboratories for the authentication of human cell lines. This technology, which is based on the informativeness of known polymorphism of numerous loci to uniquely identify a human cell line, has allowed for direct-amplification of human DNA stored on FTA(®) paper. We describe an application of this technology to create a unique STR profile by direct amplification of HCT 116 (ATCC(®) CCL-247™) cell line DNA, a cell line commonly used in colon research. The ability to perform direct-amplification of DNA opens up the possibility of using FTA(®) paper as a way to maintain long-term storage of DNA samples from a cell line and other human tissues, such as buccal cells.


Assuntos
Linhagem Celular/metabolismo , Impressões Digitais de DNA/métodos , Repetições de Microssatélites/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico , Software
18.
Forensic Sci Int Genet ; 7(2): 240-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23337322

RESUMO

The PowerPlex® Y23 System combines the seventeen Y-STR loci in current commercially available Y-STR kits (DYS19, DYS385a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, and Y-GATA-H4) with six new highly discriminating Y-STR loci (DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643). These six new loci have higher gene diversities than most of the loci in other commercial Y-STR analysis kits, allowing for further distinction between unrelated male individuals. In addition, the inclusion of two rapidly mutating Y-STR loci may allow for the discrimination of related individuals. The PowerPlex® Y23 System is designed to amplify DNA from purified extracts as well as direct amplification from substrates used to collect database samples (e.g. swabs and storage cards). Validation of the PowerPlex® Y23 System includes all of the studies required by the FBI and SWGDAM. The results demonstrate that the PowerPlex® Y23 System is a robust and reliable amplification kit capable of overcoming high concentrations of commonly encountered inhibitors such as hematin, humic acid, and tannic acid. Full profiles are consistently detected with 62.5 pg of male DNA, even in the presence of excessive amounts of female DNA, establishing the PowerPlex(®) Y23 System as a sensitive method for Y-STR testing. Complete Y-STR profiles are detected from mixed samples with 62.5 pg of male DNA in a background of 400 ng of female DNA or 125 pg of male DNA mixed with 3000 ng of female DNA.


Assuntos
Cromossomos Humanos Y , Bases de Dados Genéticas , Repetições de Microssatélites/genética , Animais , DNA/genética , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Especificidade da Espécie
19.
Forensic Sci Int Genet ; 6(1): 124-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21466982

RESUMO

We describe the developmental validation study performed on the PowerPlex(®) ESX 16 (European Standard Extended 16) and the PowerPlex(®) ESX 17 Systems, part of a suite of four new DNA profiling kits developed by Promega in response to the ENFSI and EDNAP groups' call for new STR multiplexes for Europe. The PowerPlex(®) ESX 16 System combines the 11 loci compatible with the UK National DNA Database, contained within the AmpFlSTR(®) SGM Plus(®) PCR Amplification Kit, with five additional loci: D2S441, D10S1248, D22S1045, D1S1656 and D12S391. The multiplex was designed to incorporate these five new loci as mini- and midi-STRs while maintaining the loci found in the AmpFlSTR(®) SGM Plus(®) kit as standard size. The PowerPlex(®) ESX 17 System amplifies the same loci as the PowerPlex(®) ESX 16 System, but with the addition of a primer pair for the SE33 locus. Tests were designed to address the developmental validation guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), and those of the DNA Advisory Board (DAB). Samples processed include DNA mixtures, PCR reactions spiked with inhibitors, a sensitivity series, and 306 United Kingdom donor samples to determine concordance with data generated with the AmpFlSTR(®) SGM Plus(®) kit. Allele frequencies from 242 white Caucasian samples collected in the United Kingdom are also presented. The PowerPlex(®) ESX 16 and ESX 17 Systems are robust and sensitive tools, suitable for the analysis of forensic DNA samples. Full profiles were routinely observed with 62.5 pg of a fully heterozygous single source DNA template. In mixture analysis, a range of 52-95% of unique minor contributor alleles was observed at 19:1 mixture ratios where only 25 pg of the minor component was present. Improved sensitivity combined with the robustness afforded by smaller amplicons has substantially improved the quantity of information obtained from degraded samples, and the improved chemistry confers exceptional tolerance to high levels of laboratory prepared inhibitors.


Assuntos
DNA/genética , Frequência do Gene , Humanos , Repetições de Microssatélites , Reação em Cadeia da Polimerase
20.
Forensic Sci Int Genet ; 5(5): 436-48, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21071297

RESUMO

In response to the ENFSI and EDNAP groups' call for new STR multiplexes for Europe, Promega(®) developed a suite of four new DNA profiling kits. This paper describes the developmental validation study performed on the PowerPlex(®) ESI 16 (European Standard Investigator 16) and the PowerPlex(®) ESI 17 Systems. The PowerPlex(®) ESI 16 System combines the 11 loci compatible with the UK National DNA Database(®), contained within the AmpFlSTR(®) SGM Plus(®) PCR Amplification Kit, with five additional loci: D2S441, D10S1248, D22S1045, D1S1656 and D12S391. The multiplex was designed to reduce the amplicon size of the loci found in the AmpFlSTR(®) SGM Plus(®) kit. This design facilitates increased robustness and amplification success for the loci used in the national DNA databases created in many countries, when analyzing degraded DNA samples. The PowerPlex(®) ESI 17 System amplifies the same loci as the PowerPlex(®) ESI 16 System, but with the addition of a primer pair for the SE33 locus. Tests were designed to address the developmental validation guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), and those of the DNA Advisory Board (DAB). Samples processed include DNA mixtures, PCR reactions spiked with inhibitors, a sensitivity series, and 306 United Kingdom donor samples to determine concordance with data generated with the AmpFlSTR(®) SGM Plus(®) kit. Allele frequencies from 242 white Caucasian samples collected in the United Kingdom are also presented. The PowerPlex(®) ESI 16 and ESI 17 Systems are robust and sensitive tools, suitable for the analysis of forensic DNA samples. Full profiles were routinely observed with 62.5pg of a fully heterozygous single source DNA template. This high level of sensitivity was found to impact on mixture analyses, where 54-86% of unique minor contributor alleles were routinely observed in a 1:19 mixture ratio. Improved sensitivity combined with the robustness afforded by smaller amplicons has substantially improved the quantity of data obtained from degraded samples, and the improved chemistry confers exceptional tolerance to high levels of laboratory prepared inhibitors.


Assuntos
Cor de Olho , Repetições de Microssatélites , Sequência de Bases , Primers do DNA , Europa (Continente) , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa