Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Theor Biol ; : 111892, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945471

RESUMO

Across early childhood development, sleep behavior transitions from a biphasic pattern (a daytime nap and nighttime sleep) to a monophasic pattern (only nighttime sleep). The transition to consolidated nighttime sleep, which occurs in most children between 2- and 5-years-old, is a major developmental milestone and reflects interactions between the developing homeostatic sleep drive and circadian system. Using a physiologically-based mathematical model of the sleep-wake regulatory network constrained by observational and experimental data from preschool-aged participants, we analyze how developmentally-mediated changes in the homeostatic sleep drive may contribute to the transition from napping to non-napping sleep patterns. We establish baseline behavior by identifying parameter sets that model typical 2-year-old napping behavior and 5-year-old non-napping behavior. Then we vary six model parameters associated with the dynamics of and sensitivity to the homeostatic sleep drive between the 2-year-old and 5-year-old parameter values to induce the transition from biphasic to monophasic sleep. We analyze the individual contributions of these parameters to sleep patterning by independently varying their age-dependent developmental trajectories. Parameters vary according to distinct evolution curves and produce bifurcation sequences representing various ages of transition onset, transition durations, and transitional sleep patterns. Finally, we consider the ability of napping and non-napping light schedules to reinforce napping or promote a transition to consolidated sleep, respectively. These modeling results provide insight into the role of the homeostatic sleep drive in promoting interindividual variability in developmentally-mediated transitions in sleep behavior and lay foundations for the identification of light- or behavior-based interventions that promote healthy sleep consolidation in early childhood.

2.
J Biol Rhythms ; 38(5): 492-509, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427666

RESUMO

In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers' later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Humanos , Pré-Escolar , Ritmo Circadiano/fisiologia , Sono/fisiologia , Luz
3.
J Biol Rhythms ; 38(1): 77-86, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36415902

RESUMO

Late sleep timing is prevalent in early childhood and a risk factor for poor behavioral and health outcomes. Sleep timing is influenced by the phase of the circadian clock, with later circadian timing linked to delayed sleep onset in young children. Light is the strongest zeitgeber of circadian timing and, in adults, evening light produces circadian phase delay in an intensity-dependent manner. The intensity-dependent circadian phase-shifting response to evening light in children, however, is currently unknown. In the present study, 33 healthy, good-sleeping children aged 3.0 to 4.9 years (M = 4.14 years, 39% male) completed a 10-day between-subjects protocol. Following 7 days of a stable sleep schedule, an in-home dim-light circadian assessment was performed. Children remained in dim-light across 3 days (55 h), with salivary melatonin collected in regular intervals throughout each evening. Phase-shifting effects of light exposure were determined via changes in the timing of the dim-light melatonin onset (DLMO) prior to (Day 8) and following (Day 10) a light exposure stimulus. On Day 9, children were exposed to a 1 h light stimulus in the hour before their habitual bedtime. Each child was randomly assigned to one intensity between 5 and 5000 lux (4.5-3276 melanopic EDI). Across light intensities, children showed significant circadian phase delays, with an average phase delay of 56.1 min (SD = 33.6 min), and large inter-individual variability. No relationship between light intensity and magnitude of the phase shift was observed. However, a greater percentage of melatonin suppression during the light exposure was associated with a greater phase delay (r = -0.73, p < 0.01). These findings demonstrate that some young children may be highly sensitive to light exposure in the hour before bedtime and suggest that the home lighting environment and its impact on circadian timing should be considered a possible contributor to behavioral sleep difficulties.


Assuntos
Relógios Circadianos , Melatonina , Transtornos do Sono do Ritmo Circadiano , Pré-Escolar , Feminino , Humanos , Masculino , Ritmo Circadiano/fisiologia , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa