Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9135-9146, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38754026

RESUMO

Reducing aviation emissions is important as they contribute to air pollution and climate change. Several alternative aviation fuels that may reduce life cycle emissions have been proposed. Comparative life cycle assessments (LCAs) of fuels are useful for inspecting individual fuels, but systemwide analysis remains difficult. Thus, systematic properties like fleet composition, performance, or emissions and changes to them under alternative fuels can only be partially addressed in LCAs. By integrating the geospatial fuel and emission model, AviTeam, with LCA, we can assess the mitigation potential of a fleetwide use of alternative aviation fuels on 210 000 shorter haul flights. In an optimistic case, liquid hydrogen (LH2) and power-to-liquid fuels, when produced with renewable electricity, may reduce emissions by about 950 GgCO2eq when assessed with the GWP100 metric and including non-CO2 impacts for all flights considered. Mitigation potentials range from 44% on shorter flights to 56% on longer flights. Alternative aviation fuels' mitigation potential is limited because of short-lived climate forcings and additional fuel demand to accommodate LH2 fuel. Our results highlight the importance of integrating system models into LCAs and are of value to researchers and decision-makers engaged in climate change mitigation in the aviation and transport sectors.


Assuntos
Aviação , Emissões de Veículos , Modelos Teóricos , Poluição do Ar , Mudança Climática , Poluentes Atmosféricos/análise
2.
Environ Sci Technol ; 55(22): 15040-15050, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34705455

RESUMO

Improving the robustness of maritime emission inventories is important to ensure we fully understand the point of embarkment for transformation pathways of the sector toward the 1.5 and 2°C targets. A bottom-up assessment of emissions of greenhouse gases and aerosols from the maritime sector is presented, accounting for the emissions from fuel production and processing, resulting in a complete "well-to-wake" geospatial inventory. This high-resolution inventory is developed through the use of the state-of-the-art data-driven MariTEAM model, which combines ship technical specifications, ship location data, and historical weather data. The CO2 emissions for 2017 amount to 943 million tonnes, which is 11% lower than the fourth International Maritime Organization's greenhouse gas study for the same year, while larger discrepancies have been found across ship segments. If fuel production is accounted for when developing shipping inventories, total CO2 emissions reported could increase by 11%. In addition to fuel production, effects of weather and heavy traffic regions were found to significantly impact emissions at global and regional levels. The global annual efficiency for different fuels and ship segments in approximated operational conditions were also investigated, indicating the need for more holistic metrics than current ones when seeking appropriate solutions aiming at reducing emissions.


Assuntos
Gases de Efeito Estufa , Navios , Aerossóis
4.
Glob Chang Biol ; 20(2): 607-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24277242

RESUMO

Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes ­ despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive ­ and at best ­ suboptimal if boreal forests are to be used as a tool to mitigate global warming.


Assuntos
Mudança Climática , Agricultura Florestal/métodos , Agricultura Florestal/economia , Modelos Biológicos , Modelos Teóricos , Noruega , Estações do Ano , Temperatura
5.
Sci Rep ; 14(1): 8965, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637552

RESUMO

Developing comprehensive scenarios for the shipping sector has been a challenge for the Integrated Assessment Model (IAMs) community, influencing how attainable decarbonization is in the sector, and for Earth System Models (ESMs), impacting the climate contribution of shipping emissions. Here we present an approach to develop spatially explicit energy demand projections for shipping in alignment with the Shared Socioeconomic Pathways framework and IAMs projections of global fossil fuel demand. Our results show that shipping could require between 14 and 20 EJ by 2050, corresponding to a 3% and 44% increase from 2018 for the SSP1-1.9 and SSP3-7.0 scenarios. Furthermore, the energy projections we present in this publication can be combined with different fuel mixes to derive emission inventories for climate modeling and, thus, improve our understanding of the various challenges in mitigating emissions for shipping. Through that, we aim to present a framework to incorporate detailed spatial shipping inventories and increase transparency for the scientific community.

6.
J Environ Manage ; 129: 292-301, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23974446

RESUMO

Analyses of global warming impacts from forest bioenergy systems are usually conducted either at a single stand level or at a landscape level, yielding findings that are sometimes interpreted as contrasting. In this paper, we investigate and reconcile the scales at which environmental impact analyses of forest bioenergy systems are undertaken. Focusing on the changes caused in atmospheric CO2 concentration of forest bioenergy systems characterized by different initial states of the forest, we show the features of the analyses at different scales and depict the connections between them. Impacts on atmospheric CO2 concentration at a single stand level are computed through impulse response functions (IRF). Results at a landscape level are elaborated through direct application of IRFs to the emission profile, so to account for the fluxes from all the stands across time and space. Impacts from fossil CO2 emissions are used as a benchmark. At a landscape level, forest bioenergy causes an increase in atmospheric CO2 concentration for the first decades that is similar to the impact from fossil CO2, but then the dynamics clearly diverge because while the impact from fossil CO2 continues to rise that from bioenergy stabilizes at a certain level. These results perfectly align with those obtained at a single stand for which characterization factors have been developed. In the hypothetical case of a sudden cessation of emissions, the change caused in atmospheric CO2 concentration from biogenic CO2 emissions reverses within a couple of decades, while that caused by fossil CO2 emissions remains considerably higher for centuries. When counterfactual aspects like the additional sequestration that would have occurred in the forest if not harvested and the theoretical displacement of fossil CO2 are included in the analysis, results can widely differ, as the CO2 debt at a landscape level ranges from a few years to several centuries (depending on the underlying assumptions considered).


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Agricultura Florestal , Ciclo do Carbono , Modelos Biológicos , Noruega
7.
Environ Sci Technol ; 42(13): 4958-63, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18678033

RESUMO

Industrial symbiosis promises environmental and economic gains through a utilization of the waste of some processes as a resource for other processes. Because of the costs and difficulties of transporting some wastes, the largest theoretical potential for industrial symbiosis is given when facilities are colocated in an eco-industrial park (EIP). This study proposes a model-centered approach with an eight-step procedure for the early planning and design of an eco-industrial park considering technical and environmental factors. Chemical process simulation software was used to model the energy and material flows among the prospective members and to quantify the benefits of integration among different firms in terms of energy and resources saved as compared to a reference situation. Process simulation was based on a combination of physical models of industrial processes and empirical models. The modeling allows for the development and evaluation of different collaboration opportunities and configurations. It also enables testing chosen configurations under hypothetical situations or external conditions. We present a case study around an existing oil and gas refinery in Mongstad, Norway. We used the approach to propose the colocation of a number of industrial facilities around the refinery, focused on integrating energy use among the facilities. An EIP with six main members was designed and simulated, matching new hypothetical members in size to the existing operations, modeling material and energy flows in the EIP, and assessing these in terms of carbon and hydrogen flows.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Indústrias Extrativas e de Processamento , Arquitetura de Instituições de Saúde , Modelos Teóricos , Simulação por Computador , Poluição Ambiental/prevenção & controle , Noruega
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa