Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 7(6): e1002101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731494

RESUMO

Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4.


Assuntos
HIV-1/patogenicidade , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Variação Genética , Anticorpos Anti-HIV , Infecções por HIV , Humanos , Testes de Neutralização , Receptores Virais/metabolismo
2.
J Virol ; 85(8): 3792-801, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289110

RESUMO

The Gag-Pol polyprotein of human immunodeficiency virus type 1 (HIV-1) is not required for efficient viral particle production. However, premature termination codons in pol, particularly in the integrase (IN)-coding region, can markedly impair HIV-1 particle formation, apparently due to the premature activation of the viral protease (PR). We now report that the IN domain of Gag-Pol is required for the incorporation of clathrin into HIV-1 virions. Significantly, PR-dependent effects of point mutations in IN on particle production correlated strictly with their effects on clathrin incorporation. A possible interpretation of these findings is that certain IN mutations impair particle production in a PR-dependent manner by promoting Gag-Pol dimerization, which also occludes a binding site for clathrin. Consistently with this model, the reverse transcriptase (RT) inhibitor efavirenz, which is thought to promote Gag-Pol dimerization, inhibited the incorporation of clathrin into HIV-1 virions. Clathrin-depleted cells produced normal amounts of HIV-1 virions; however, their infectivity was reduced. We also observed that HIV-2 and the simian immunodeficiency virus SIVmac interact with clathrin through one or two copies of a peptide motif in the p6 domain of Gag that resembles the clathrin box of cellular adaptor proteins. Furthermore, the substitution of the hydrophobic residues in the single clathrin box motif of SIVmac caused a replication defect in primary cells. Taken together, our results indicate that primate lentiviruses from two different subgroups functionally interact with clathrin during assembly.


Assuntos
Clatrina/metabolismo , HIV-1/fisiologia , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene pol do Vírus da Imunodeficiência Humana/metabolismo , Animais , HIV-2/fisiologia , Humanos , Lentivirus de Primatas , Ligação Proteica , Vírus da Imunodeficiência Símia/fisiologia , Vírion/química
3.
Virology ; 338(1): 133-43, 2005 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-15950253

RESUMO

The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins. Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate.


Assuntos
Proteína gp41 do Envelope de HIV/química , HIV-1/química , Linhagem Celular , Variação Genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Humanos , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transfecção
4.
J Virol ; 79(22): 14446-50, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16254380

RESUMO

The retrovirus restriction factor TRIM5alpha targets the viral capsid soon after entry. Here we show that the TRIM5alpha protein oligomerizes into trimers. The TRIM5alpha coiled-coil and B30.2(SPRY) domains make important contributions to the formation and/or stability of the trimers. A functionally defective TRIM5alpha mutant with the RING and B-box 2 domains deleted can form heterotrimers with wild-type TRIM5alpha, accounting for the observed dominant-negative activity of the mutant protein. Trimerization potentially allows TRIM5alpha to interact with threefold pseudosymmetrical structures on retroviral capsids.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas/metabolismo , Retroviridae/metabolismo , Animais , Sítios de Ligação , Capsídeo/metabolismo , Linhagem Celular , Chlorocebus aethiops , Variação Genética , Células HeLa , Humanos , Macaca mulatta , Transfecção , Ubiquitina-Proteína Ligases
5.
J Virol ; 76(11): 5472-9, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11991975

RESUMO

Retroviral Gag polyproteins contain regions that promote the separation of virus particles from the plasma membrane and from each other. These Gag regions are often referred to as late assembly (L) domains. The L domain of human immunodeficiency virus type 1 (HIV-1) is in the C-terminal p6(gag) domain and harbors an essential P(T/S)APP motif, whereas the L domains of oncoretroviruses are in the N-terminal half of the Gag precursor and have a PPXY core motif. We recently observed that L domains induce the ubiquitination of a minimal HIV-1 Gag construct and that point mutations which abolish L domain activity prevent Gag ubiquitination. In that study, a peptide from the Ebola virus L domain with overlapping P(T/S)APP and PPXY motifs showed exceptional activity in promoting Gag ubiquitination and the release of virus-like particles. We now show that a substitution which disrupts the PPXY motif but leaves the P(T/S)APP motif intact abolishes L domain activity in the minimal Gag context, but not in the context of a near full-length HIV-1 Gag precursor. Our results reveal that the P(T/S)APP motif does not function autonomously and indicate that the HIV-1 nucleocapsid-p1 region, which is proximal to p6(gag), can cooperate with the conserved L domain core motif. We have also examined the effects of ubiquitin mutants on virus-like particle production, and the results indicate that residues required for the endocytosis function of ubiquitin are also involved in virus budding.


Assuntos
Endocitose/fisiologia , Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Ubiquitina/metabolismo , Montagem de Vírus/fisiologia , Motivos de Aminoácidos , Expressão Gênica , Produtos do Gene gag/genética , HIV-1/genética , Humanos , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vírion , Produtos do Gene gag do Vírus da Imunodeficiência Humana
6.
J Biol Chem ; 279(9): 7792-8, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14672928

RESUMO

Viruses must overcome diverse intracellular defense mechanisms to establish infection. The Vif (virion infectivity factor) protein of human immunodeficiency virus 1 (HIV-1) acts by overcoming the antiviral activity of APOBEC3G (CEM15), a cytidine deaminase that induces G to A hypermutation in newly synthesized viral DNA. In the absence of Vif, APOBEC3G incorporation into virions renders HIV-1 non-infectious. We report here that Vif counteracts the antiviral activity of APOBEC3G by targeting it for destruction by the ubiquitin-proteasome pathway. Vif forms a complex with APOBEC3G and enhances APOBEC3G ubiquitination, resulting in reduced steady-state APOBEC3G levels and a decrease in protein half-life. Furthermore, Vif-dependent degradation of APOBEC3G is blocked by proteasome inhibitors or ubiquitin mutant K48R. A mutation of highly conserved cysteines or the deletion of a conserved SLQ(Y/F)LA motif in Vif results in mutants that fail to induce APOBEC3G degradation and produce non-infectious HIV-1; however, mutations of conserved phosphorylation sites in Vif that impair viral replication do not affect APOBEC3G degradation, suggesting that Vif is important for other functions in addition to inducing proteasomal degradation of APOBEC3G. Vif is monoubiquitinated in the absence of APOBEC3G but is polyubiquitinated and rapidly degraded when APOBEC3G is coexpressed, suggesting that coexpression accelerates the degradation of both proteins. These results suggest that Vif functions by targeting APOBEC3G for degradation via the ubiquitin-proteasome pathway and implicate the proteasome as a site of dynamic interplay between microbial and cellular defenses.


Assuntos
Cisteína Endopeptidases/metabolismo , Produtos do Gene vif/fisiologia , Complexos Multienzimáticos/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Desaminase APOBEC-3G , Linhagem Celular , Linhagem Celular Tumoral , Sequência Conservada , Cisteína , Citidina Desaminase , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Expressão Gênica , Produtos do Gene vif/química , Produtos do Gene vif/genética , HIV-1/química , Meia-Vida , Humanos , Técnicas de Imunoadsorção , Lactonas/farmacologia , Leupeptinas/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Mutação , Nucleosídeo Desaminases , Fosforilação , Complexo de Endopeptidases do Proteassoma , Proteínas/genética , Proteínas Recombinantes , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade , Transfecção , Produtos do Gene vif do Vírus da Imunodeficiência Humana
7.
Cell ; 114(6): 689-99, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-14505569

RESUMO

HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar protein sorting (Vps) machinery. We now show that HIV Gag p6 contains a second region involved in L domain function that binds AIP1, a homolog of the yeast class E Vps protein Bro1. Further, AIP1 interacts with Tsg101 and homologs of a subunit of the yeast class E Vps protein complex ESCRT-III. AIP1 also binds to the L domain in EIAV p9, and this binding correlates perfectly with L domain function. These observations identify AIP1 as a component of the viral budding machinery, which serves to link a distinct region in the L domain of HIV-1 p6 and EIAV p9 to ESCRT-III.


Assuntos
Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Vírus da Anemia Infecciosa Equina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Eliminação de Partículas Virais/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Produtos do Gene gag/genética , HIV-1/genética , Células HeLa , Humanos , Vírus da Anemia Infecciosa Equina/genética , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular , Produtos do Gene gag do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa