Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 473(7348): 514-8, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21532590

RESUMO

In the adult brain, new synapses are formed and pre-existing ones are lost, but the function of this structural plasticity has remained unclear. Learning of new skills is correlated with formation of new synapses. These may directly encode new memories, but they may also have more general roles in memory encoding and retrieval processes. Here we investigated how mossy fibre terminal complexes at the entry of hippocampal and cerebellar circuits rearrange upon learning in mice, and what is the functional role of the rearrangements. We show that one-trial and incremental learning lead to robust, circuit-specific, long-lasting and reversible increases in the numbers of filopodial synapses onto fast-spiking interneurons that trigger feedforward inhibition. The increase in feedforward inhibition connectivity involved a majority of the presynaptic terminals, restricted the numbers of c-Fos-expressing postsynaptic neurons at memory retrieval, and correlated temporally with the quality of the memory. We then show that for contextual fear conditioning and Morris water maze learning, increased feedforward inhibition connectivity by hippocampal mossy fibres has a critical role for the precision of the memory and the learned behaviour. In the absence of mossy fibre long-term potentiation in Rab3a(-/-) mice, c-Fos ensemble reorganization and feedforward inhibition growth were both absent in CA3 upon learning, and the memory was imprecise. By contrast, in the absence of adducin 2 (Add2; also known as ß-adducin) c-Fos reorganization was normal, but feedforward inhibition growth was abolished. In parallel, c-Fos ensembles in CA3 were greatly enlarged, and the memory was imprecise. Feedforward inhibition growth and memory precision were both rescued by re-expression of Add2 specifically in hippocampal mossy fibres. These results establish a causal relationship between learning-related increases in the numbers of defined synapses and the precision of learning and memory in the adult. The results further relate plasticity and feedforward inhibition growth at hippocampal mossy fibres to the precision of hippocampus-dependent memories.


Assuntos
Retroalimentação Fisiológica/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Memória/fisiologia , Inibição Neural/fisiologia , Potenciais de Ação , Animais , Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Proteínas do Citoesqueleto , Medo/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Modelos Neurológicos , Fibras Musgosas Hipocampais/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pseudópodes/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Sinapses/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(26): 10824-9, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23754371

RESUMO

Plasticity in the central nervous system in response to injury is a complex process involving axonal remodeling regulated by specific molecular pathways. Here, we dissected the role of growth-associated protein 43 (GAP-43; also known as neuromodulin and B-50) in axonal structural plasticity by using, as a model, climbing fibers. Single axonal branches were dissected by laser axotomy, avoiding collateral damage to the adjacent dendrite and the formation of a persistent glial scar. Despite the very small denervated area, the injured axons consistently reshape the connectivity with surrounding neurons. At the same time, adult climbing fibers react by sprouting new branches through the intact surroundings. Newly formed branches presented varicosities, suggesting that new axons were more than just exploratory sprouts. Correlative light and electron microscopy reveals that the sprouted branch contains large numbers of vesicles, with varicosities in the close vicinity of Purkinje dendrites. By using an RNA interference approach, we found that downregulating GAP-43 causes a significant increase in the turnover of presynaptic boutons. In addition, silencing hampers the generation of reactive sprouts. Our findings show the requirement of GAP-43 in sustaining synaptic stability and promoting the initiation of axonal regrowth.


Assuntos
Córtex Cerebelar/lesões , Córtex Cerebelar/fisiopatologia , Proteína GAP-43/fisiologia , Regeneração Nervosa/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Axotomia , Córtex Cerebelar/ultraestrutura , Proteína GAP-43/antagonistas & inibidores , Proteína GAP-43/genética , Imageamento Tridimensional , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Fibras Nervosas/fisiologia , Fibras Nervosas/ultraestrutura , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Interferência de RNA
4.
Cerebellum ; 14(5): 570-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25626523

RESUMO

Great attention has been given so far to cerebellar control of posture and of skilled movements despite the well-demonstrated interconnections between the cerebellum and the autonomic nervous system. Here is a review of the link between these two structures and a report on the recently acquired evidence for its involvement in the world of emotions. In rodents, the reversible inactivation of the vermis during the consolidation or the reconsolidation period hampers the retention of the fear memory trace. In this region, there is a long-term potentiation of both the excitatory synapses between the parallel fibres and the Purkinje cells and of the feed-forward inhibition mediated by molecular layer interneurons. This concomitant potentiation ensures the temporal fidelity of the system. Additional contacts between mossy fibre terminals and Golgi cells provide morphological evidence of the potentiation of another feed-forward inhibition in the granular layer. Imaging experiments show that also in humans the cerebellum is activated during mental recall of emotional personal episodes and during learning of a conditioned or unconditioned association involving emotions. The vermis participates in fear learning and memory mechanisms related to the expression of autonomic and motor responses of emotions. In humans, the cerebellar hemispheres are also involved at a higher emotional level. The importance of these findings is evident when considering the cerebellar malfunctioning in psychiatric diseases like autism and schizophrenia which are characterized behaviourally by emotion processing impairments.


Assuntos
Cerebelo/fisiologia , Emoções/fisiologia , Animais , Cerebelo/anatomia & histologia , Cerebelo/patologia , Humanos , Transtornos Mentais/patologia
5.
J Neurosci ; 33(29): 12105-21, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864696

RESUMO

Cerebellar deficit contributes significantly to disability in multiple sclerosis (MS). Several clinical and experimental studies have investigated the pathophysiology of cerebellar dysfunction in this neuroinflammatory disorder, but the cellular and molecular mechanisms are still unclear. In experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, proinflammatory cytokines, together with a degeneration of inhibitory neurons, contribute to impair GABAergic transmission at Purkinje cells (PCs). Here, we investigated glutamatergic transmission to gain insight into the pathophysiology of cerebellar dysfunction in EAE. Electrophysiological recordings from PCs showed increased duration of spontaneous excitatory postsynaptic currents (EPSCs) during the symptomatic phase of EAE, suggesting an alteration of glutamate uptake played by Bergmann glia. We indeed observed an impaired functioning of the glutamate-aspartate transporter/excitatory amino acid transporter 1 (GLAST/EAAT1) in EAE cerebellum caused by protein downregulation and in correlation with prominent astroglia activation. We have also demonstrated that the proinflammatory cytokine interleukin-1ß (IL-1ß), released by a subset of activated microglia/macrophages and infiltrating lymphocytes, was involved directly in such synaptic alteration. In fact, brief incubation of IL-1ß in normal cerebellar slices replicated EAE modifications through a rapid GLAST/EAAT1 downregulation, whereas incubation of an IL-1 receptor antagonist (IL-1ra) in EAE slices reduced spontaneous EPSC alterations. Finally, EAE mice treated with intracerebroventricular IL-1ra showed normal glutamatergic and GABAergic transmissions, along with GLAST/EAAT1 normalization, milder inflammation, and reduced motor deficits. These results highlight the crucial role played by the proinflammatory IL-1ß in triggering molecular and synaptic events involved in neurodegenerative processes that characterize neuroinflammatory diseases such as MS.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Ácido Glutâmico/metabolismo , Interleucina-1beta/farmacologia , Células de Purkinje/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Camundongos , Células de Purkinje/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
6.
Proc Natl Acad Sci U S A ; 105(2): 769-74, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18184813

RESUMO

Despite the widespread distribution of inhibitory synapses throughout the central nervous system, plasticity of inhibitory synapses related to associative learning has never been reported. In the cerebellum, the neural correlate of fear memory is provided by a long-term potentiation (LTP) of the excitatory synapse between the parallel fibers (PFs) and the Purkinje cell (PC). In this article, we provide evidence that inhibitory synapses in the cerebellar cortex also are affected by fear conditioning. Whole-cell patch-clamp recordings of spontaneous and miniature GABAergic events onto the PC show that the frequency but not the amplitude of these events is significantly greater up to 24 h after the conditioning. Adequate levels of excitation and inhibition are required to maintain the temporal fidelity of a neuronal network. Such fidelity can be evaluated by determining the time window for multiple input coincidence detection. We found that, after fear learning, PCs are able to integrate excitatory inputs with greater probability within short delays, but the width of the whole window is unchanged. Therefore, excitatory LTP provides a more effective detection, and inhibitory potentiation serves to maintain the time resolution of the system.


Assuntos
Córtex Cerebelar/metabolismo , Aprendizagem , Potenciação de Longa Duração , Sinapses/metabolismo , Animais , Cerebelo/metabolismo , Eletrofisiologia , Medo , Plasticidade Neuronal , Neurônios/metabolismo , Técnicas de Patch-Clamp , Probabilidade , Células de Purkinje/metabolismo , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
7.
Proc Natl Acad Sci U S A ; 105(48): 18988-93, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19020084

RESUMO

Competition among different axons to reach the somatodendritic region of the target neuron is an important event during development to achieve the final architecture typical of the mature brain. Trasmitter-receptor matching is a critical step for the signaling between neurons. In the cerebellar cortex, there is a persistent competition between the two glutamatergic inputs, the parallel fibers and the climbing fibers, for the innervation of the Purkinje cells. The activity of the latter input is necessary to maintain its own synaptic contacts on the proximal dendritic domain and to confine the parallel fibers in the distal one. Here, we show that climbing fiber activity also limits the distribution of the GABAergic input in the proximal domain. In addition, blocking the activity by tetrodotoxin infusion in Wistar rat cerebellum, a synapse made by GABAergic terminals onto the recently formed Purkinje cell spines appear in the proximal dendrites. The density of GABAergic terminals is increased, and unexpected double symmetric/asymmetric postsynaptic densities add to the typical symmetric phenotype of the GABAergic shaft synapses. Moreover, glutamate receptors appear in these ectopic synapses even in the absence of glutamate transmitter inside the presynaptic terminal and close to GABA receptors. These results suggest that the Purkinje cell has an intrinsic tendency to develop postsynaptic assemblies of excitatory types, including glutamate receptors, over the entire dendritic territory. GABA receptors are induced in these assemblies when contacted by GABAergic terminals, thus leading to the formation of hybrid synapses.


Assuntos
Receptores de GABA/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Ácido Glutâmico/metabolismo , Masculino , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato/metabolismo , Bloqueadores dos Canais de Sódio/metabolismo , Sinapses/ultraestrutura , Tetrodotoxina/metabolismo
8.
Proc Natl Acad Sci U S A ; 105(35): 13151-6, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18723687

RESUMO

GABAergic synapses are crucial for brain function, but the mechanisms underlying inhibitory synaptogenesis are unclear. Here, we show that postnatal Purkinje cells (PCs) of GABA(A)alpha1 knockout (KO) mice express transiently the alpha3 subunit, leading to the assembly of functional GABA(A) receptors and initial normal formation of inhibitory synapses, that are retained until adulthood. Subsequently, down-regulation of the alpha3 subunit causes a complete loss of GABAergic postsynaptic currents, resulting in a decreased rate of inhibitory synaptogenesis and formation of mismatched synapses between GABAergic axons and PC spines. Notably, the postsynaptic adhesion molecule neuroligin-2 (NL2) is correctly targeted to inhibitory synapses lacking GABA(A) receptors and the scaffold molecule gephyrin, but is absent from mismatched synapses, despite innervation by GABAergic axons. Our data indicate that GABA(A) receptors are dispensable for synapse formation and maintenance and for targeting NL2 to inhibitory synapses. However, GABAergic signaling appears to be crucial for activity-dependent regulation of synapse density during neuronal maturation.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de GABA-A/deficiência , Sinapses/metabolismo , Animais , Moléculas de Adesão Celular Neuronais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/ultraestrutura , Receptores de GABA-A/metabolismo , Sinapses/ultraestrutura
10.
Neurobiol Dis ; 36(1): 103-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19595767

RESUMO

We determined total Purkinje cell (PC) numbers in cerebella of wild-type (+/+) and heterozygous (rl/+) reeler mice of either sex during early postnatal development; in parallel, we quantified levels of neuroactive steroids in the cerebellum with mass spectrometry. We also quantified reelin mRNA and protein expression with RT-PCR and Western blotting. PC numbers are selectively reduced at postnatal day 15 (P15) in rl/+ males in comparison to +/+ males, +/+ females, and rl/+ females. Administration of 17beta-estradiol (17beta-E) into the cisterna magna at P5 increases PC numbers in rl/+ males, but not in the other groups; conversely, estrogen antagonists 4-OH-tamoxifen or ICI 182,780 reduce PC numbers in +/+ and rl/+ females, but have no effect in males. Testosterone (T) levels at P5 are much higher in males than in females, reflecting the perinatal testosterone surge in males. In addition, rl/+ male cerebella at P5 show a peculiar hormonal profile in comparison with the other groups, consisting of increased levels of T and 17beta-E, and decreased levels of dihydrotestosterone. RT-PCR analysis indicated that heterozygosity leads to a 50% reduction of reelin mRNA in the cerebellum in both sexes, as expected, and that 17beta-E upregulates reelin mRNA, particularly in rl/+ males; reelin mRNA upregulation is associated with an increase of all major reelin isoforms. These effects may represent a novel model of how reelin deficiency interacts with variable perinatal levels of neuroactive steroids, leading to gender-dependent differences in genetic vulnerability.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Proteínas da Matriz Extracelular/deficiência , Proteínas do Tecido Nervoso/deficiência , Células de Purkinje/fisiologia , Serina Endopeptidases/deficiência , Esteroides/metabolismo , Animais , Animais Recém-Nascidos , Aromatase/metabolismo , Encéfalo/citologia , Calbindinas , Moléculas de Adesão Celular Neuronais/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromatografia Líquida/métodos , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios/farmacologia , Proteínas da Matriz Extracelular/genética , Feminino , Fulvestranto , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Oxirredutases/metabolismo , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Proteína Reelina , Proteína G de Ligação ao Cálcio S100/metabolismo , Serina Endopeptidases/genética , Fatores Sexuais , Espectrometria de Massas em Tandem/métodos , Testosterona/metabolismo
11.
Endeavour ; 43(4): 100707, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31883701

RESUMO

At the turn of the nineteenth and twentieth centuries, the landscape of emerging experimental embryology in the United States was dominated by the Canadian Frank Rattray Lillie, who combined his qualities as scientist and director with those of teacher at the University of Chicago. In the context of his research on chick development, he encouraged the young Marian Lydia Shorey to investigate the interactions between the central nervous system and the peripheral structures. The results were published in two papers which marked the beginning of a new branch of embryology, namely neuroembryology. These papers inspired ground-breaking enquiry by Viktor Hamburger which opened a new area of the research by Rita Levi-Montalcini, in turn leading to the discovery of the nerve growth factor, NGF.


Assuntos
Embriologia/história , Fator de Crescimento Epidérmico/história , Neurologia/história , Animais , Embrião de Galinha , História do Século XX , Fator de Crescimento Neural/história , Estados Unidos , Universidades/história
12.
Neuron ; 42(6): 973-82, 2004 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15207241

RESUMO

To better understand learning mechanisms, one needs to study synaptic plasticity induced by behavioral training. Recently, it has been demonstrated that the cerebellum is involved in the consolidation of fear memory. Nevertheless, how the cerebellum contributes to emotional behavior is far from known. In cerebellar slices at 10 min and 24 hr following fear conditioning, we found a long-lasting potentiation of the synapse between parallel fibers and Purkinje cells in vermal lobules V-VI, but not in the climbing fiber synapses. The mechanism is postsynaptic, due to an increased AMPA response. In addition, in hotfoot mice with a primary deficiency of the parallel fiber to Purkinje cell synapse, cued (but not contextual) fear conditioning is affected. We propose that this synapse plays an important role in the learned fear and that its long-term potentiation may represent a contribution to the neural substrate of fear memory.


Assuntos
Córtex Cerebelar/fisiologia , Condicionamento Psicológico/fisiologia , Medo , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal , Córtex Cerebelar/citologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Ácido Caínico/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Atividade Motora/fisiologia , Medição da Dor , Técnicas de Patch-Clamp/métodos , Células de Purkinje/fisiologia , Quinoxalinas/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Tempo de Reação/fisiologia , Retenção Psicológica/fisiologia , Fatores de Tempo
13.
J Neurosci ; 27(17): 4603-11, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17460073

RESUMO

Two models of spine formation have been proposed. Spines can derive from emerging dendritic filopodia that have encountered presynaptic partners, or presynaptic molecules may induce the spine maturation event directly from the dendritic shaft. The first model applies better to the Purkinje cell (PC), because numerous free spines have been described in several conditions, particularly when granule cells degenerate before parallel fiber (PF) synapses are formed. A large number of new spines, many of them being free, appear in the proximal dendritic domain after blockage of electrical activity by tetrodotoxin (TTX). A complete blockage of the AMPA receptors by NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzoquinoxaline-7-sulfonamide), leading to a complete absence of PF- and climbing fiber (CF)-evoked EPSCs and of spontaneous glutamatergic quantal events, mimics the TTX effect. In contrast, metabotropic glutamate receptor blockage by MCPG [(S)-alpha-methyl-4-carboxyphenylglycine] is ineffective. In normal conditions, in the proximal dendritic domain of the PC, clusters of a few spines are present only under each CF varicosity. It has been proposed that the active CF is responsible for spine pruning in the territory surrounding the CF synapses. Here, we show that such a pruning is mediated by AMPA but not by metabotropic receptors. Finally, after AMPA receptor blockage, there is a reduced number of spines in each spine cluster underlying CF varicosity. In conclusion, PCs tend to express spines over the entire dendritic territory. CF activity reinforces the CF synaptic contacts and actively suppresses spines in the surrounding territory, which is an effect mediated by AMPA receptors.


Assuntos
Cerebelo/fisiologia , Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Células de Purkinje/fisiologia , Animais , Cerebelo/citologia , Espinhas Dendríticas/ultraestrutura , Eletrofisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Microscopia Eletrônica , Plasticidade Neuronal/efeitos dos fármacos , Células de Purkinje/ultraestrutura , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Receptores de Glutamato/fisiologia
14.
Psychoneuroendocrinology ; 32 Suppl 1: S31-5, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17640822

RESUMO

The cerebellum is a brain region endowed with a high degree of plasticity also in adulthood. After damage or alteration in the patterns of activity, it is able to undergo remarkable changes in its architecture and to form new connections based upon a process of synaptic reorganization. This review addresses cellular and molecular mechanisms that regulate the competition between two inputs belonging to different neuronal populations in innervating two contiguous but separate domains of the same target cell. The two inputs are the parallel fibers, the axon of the cerebellar granule cells, and the olivocerebellar neurons, that terminate as climbing fibers in the cerebellar cortex. The target is the Purkinje cell characterized by two dendritic domains that are different in size and number of spines, upon which the two afferent inputs impinge. Both inputs express several genes related to plasticity throughout the life span conferring the ability to remodel their synapses. In addition, we provided evidence that climbing fibers and Purkinje cells show remarkable reciprocal trophic interactions that are required for the maintenance of the correct synaptic connectivity. Through their activity, climbing fibers sustain the competition with parallel fibers by displacing this input to the distal territory of the Purkinje cell dendrite. In addition, they operate on the Purkinje cells through AMPA receptor suppressing spines in the territory surrounding their synapses. In this way, climbing fibers are able to optimize spine distribution and functional connectivity.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Cerebelo/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Diferenciação Celular/fisiologia , Cerebelo/citologia , Humanos , Fibras Nervosas/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia
15.
Ann N Y Acad Sci ; 1096: 230-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17405934

RESUMO

Subtotal lesion of the inferior olive (IO) achieved by treating experimental animals with 3-acetylpyridine (3AP) induces partial Purkinje cells (PCs) deafferentation that leads to PC hyperactivity and new spine formation. Coincidentally, the olivary terminals belonging to the few survived olivary neurons undergo an extensive collateral sprouting resulting in reinnervation of the neighboring denervated PCs. We obtained chemical deafferentation of PCs in adult rats (body weight, 120-170 g; age, 35-40 days) by a single intraperitoneal injection of 3AP (65 mg/kg body weight), and as early as 3 days after 3AP treatment, important morphological changes could be observed on PCs. Mitogen-activated protein kinase (MAPK) cascades and more specifically extracellular signal-regulated kinases 1/2 (ERK1/2) play a critical role in the signaling events underlying synaptic plasticity. For instance, long-term depression (LTD) in the adult hippocampus and long-term potentiation (LTP) in cerebellum both involve ERK activation. Since PCs deprived of their climbing fibers (CFs) afferents initiate an intensive remodeling of the spines and rapid recall of the remaining CFs, it prompted us to see whether the observed phenomena correlated with MAPK and Akt activation. Immunohistochemistry and Western blotting were done at various time points after 3AP application (from 24 h to 6 days), as the exact dynamics of CF loss is not precisely known. As judged by Western blotting, there was no increase of activated ERK in the cerebellum. However, immunohistochemistry revealed increased ERK phosphorylation in the "pinceaux" of basket cells in 3AP animals. Similarly, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38 MAPK, and Akt activation were also studied by means of Western blotting and immunohistochemistry. Upon 3AP treatment no changes in phosphorylation status could be seen in the different kinases subjected to analysis. Our results suggest that activation of MAPK and Akt cascades is not essential in this model of neuronal plasticity.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/metabolismo , Animais , Cerebelo/metabolismo , Ativação Enzimática , Hipocampo/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Potenciação de Longa Duração , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Comp Neurol ; 494(4): 559-77, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16374793

RESUMO

The decrease in plasticity that occurs in the central nervous system during postnatal development is accompanied by the appearance of perineuronal nets (PNNs) around the cell body and dendrites of many classes of neuron. These structures are composed of extracellular matrix molecules, such as chondroitin sulfate proteoglycans (CSPGs), hyaluronan (HA), tenascin-R, and link proteins. To elucidate the role played by neurons and glial cells in constructing PNNs, we studied the expression of PNN components in the adult rat cerebellum by immunohistochemistry and in situ hybridization. In the deep cerebellar nuclei, only large excitatory neurons were surrounded by nets, which contained the CSPGs aggrecan, neurocan, brevican, versican, and phosphacan, along with tenascin-R and HA. Whereas both net-bearing neurons and glial cells were the sources of CSPGs and tenascin-R, only the neurons expressed the mRNA for HA synthases (HASs), cartilage link protein, and link protein Bral2. In the cerebellar cortex, Golgi neurons possessed PNNs and also synthesized HASs, cartilage link protein, and Bral2 mRNAs. To see whether HA might link PNNs to the neuronal cell surface by binding to a receptor, we investigated the expression of the HA receptors CD44, RHAMM, and LYVE-1. No immunolabelling for HA receptors on the membrane of net-bearing neurons was found. We therefore propose that HASs, which can retain HA on the cell surface, may act as a link between PNNs and neurons. Thus, HAS and link proteins might be key molecules for PNN formation and stability.


Assuntos
Cerebelo/metabolismo , Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Cerebelo/citologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Feminino , Glucuronosiltransferase/metabolismo , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases , Ácido Hialurônico/metabolismo , Hibridização In Situ , Plasticidade Neuronal/fisiologia , Ratos , Ratos Sprague-Dawley
17.
Prog Neurobiol ; 72(6): 373-98, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15177783

RESUMO

In the adult brain, different neuronal populations display different degrees of plasticity. Here, we describe the highly different plastic properties of inferior olivary neurones and Purkinje cells. Olivary neurones show a basal expression of growth-associated proteins, such as GAP-43 and Krox24/EGR-1, and remarkable remodelling capabilities of their terminal arbour. They also regenerate their transected neurites into growth-permissive territories and may reinnervate the lost target. Sprouting and regrowing olivary axons are able to follow specific positional information cues to establish new connections according to the original projection map. In addition, they set a strong cell body reaction to injury, which in specific olivary subsets is regulated by inhibitory target-derived cues. In contrast, Purkinje cells do not have a constitutive level of growth-associated genes, and show little cell body reaction, no axonal regeneration after axotomy, and weak sprouting capabilities. Block of myelin-derived signals allows terminal arbour remodelling, but not regeneration, while selective over-expression of GAP-43 induces axonal sprouting along the axonal surface and at the level of the lesion. We suggest that the high constitutive intrinsic plasticity of the inferior olive neurones allows their terminal arbour to sustain the activity-dependent ongoing competition with the parallel fibres in order to maintain the post-synaptic territory, and possibly underlies mechanisms of learning and memory. Such a plasticity is used also as a reparative mechanism following axotomy. In contrast, in Purkinje cells, poor intrinsic regenerative capabilities and myelin-derived signals stabilise the mature connectivity and prevent axonal regeneration after lesion.


Assuntos
Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Expressão Gênica , Fibras Nervosas/fisiologia , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo
18.
J Neurosci ; 23(6): 2363-70, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12657696

RESUMO

In the adult cerebellum, the glutamate receptor delta2 subunit (GluRdelta2) is selectively targeted to the spines of the distal Purkinje cell dendrites, the spiny branchlets, that are innervated by the parallel fibers. Although GluRdelta2 has no known channel function, it is presumed to be involved in the formation and stabilization of these synapses. After block of electrical activity by tetrodotoxin, GluRdelta2s appear in the postsynaptic densities of the proximal dendritic spines, which then lose their contact with climbing fibers and become ectopically innervated by parallel fibers. This phenomenon suggests that climbing fiber activity prevents GluRdelta2 targeting to proximal dendrites and that GluRdelta2s admitted to the postsynaptic density of the spine cause withdrawal of the silent climbing fiber. To test this hypothesis, we studied the distribution of GluRdelta2s in the rat cerebellum by immunoelectron microscopy during the recovery period that follows removal of the electrical block, and during the sprouting of climbing fibers that follows subtotal deletion of the parent inferior olivary neurons by administration of the drug 3-acetylpyridine. We found that after removal of the electrical block, the climbing fibers reinnervate proximal spines that bear GluRdelta2s and these subunits are successively repressed. Similarly, after subtotal lesion of the inferior olive, reinnervation of denervated Purkinje cells occurs on spines bearing GluRdelta2s. Thus, GluRdelta2s are not responsible for displacing silent climbing fibers. We propose instead that GluRdelta2s are associated with climbing fiber-to-Purkinje cell synapses, during development or at early stages of climbing fiber regeneration or sprouting, and are downregulated during the process of synapse maturation.


Assuntos
Ataxia Cerebelar/fisiopatologia , Cerebelo/metabolismo , Receptores de Glutamato/metabolismo , Sinapses/metabolismo , Animais , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/patologia , Ataxia Cerebelar/induzido quimicamente , Ataxia Cerebelar/patologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Inibidores Enzimáticos/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/patologia , Neurotoxinas/farmacologia , Núcleo Olivar/efeitos dos fármacos , Núcleo Olivar/patologia , Terminações Pré-Sinápticas/patologia , Terminações Pré-Sinápticas/ultraestrutura , Subunidades Proteicas/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Tetrodotoxina
19.
Neuroscientist ; 11(3): 217-27, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15911871

RESUMO

In addition to coordinating movement, the cerebellum participates in motor learning, emotional behavior, and fear memory. Fear learning is reflected in a change of autonomic and somatic responses, such as heart rate and freezing, elicited by a neutral stimulus that has been previously paired with a painful one. Manipulation of the vermis affects these responses, and its reversible inactivation during the consolidation period impairs fear memory. The neural correlate of cerebellar involvement in fear consolidation is provided by a behaviorally induced long-term increase of synaptic efficacy between parallel fibers and a Purkinje cell. Similar synaptic changes after fear conditioning are well documented in the amygdala and hippocampus, providing a link between emotional experiences and changes in neural activity. In addition, in hotfoot mice, with a primary deficiency of parallel fiber to Purkinje cell synapse, short- and long-term fear memories are affected. All these data support the idea that the cerebellum participates in fear learning. The functional interconnection of the vermis with hypothalamus, amygdala, and hippocampus suggests a more complex role of the cerebellum as part of an integrated network regulating emotional behavior.


Assuntos
Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Medo , Sinapses/fisiologia , Animais , Cerebelo/citologia , Cerebelo/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Humanos , Redes Neurais de Computação , Sinapses/metabolismo
20.
Prog Brain Res ; 148: 45-56, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15661180

RESUMO

By blocking electrical activity in the cerebellar cortex the Purkinje cell dendrites become a uniform territory with a high density of spines all bearing the glutamate receptor delta2 subunit (GluRdelta2) and being mainly innervated by parallel fibers. Such a subunit, which is constitutively targeted specifically to the parallel fiber synapses, appears in the spines contacted by the climbing fibers before they disconnect from the target. A similar pattern of hyperspiny transformation and innervation occurs a few days after a subtotal lesion of the inferior olive, the source of climbing fibers. During the climbing fiber reinnervation process which follows the removal of the electrical block or by collateral sprouting of surviving inferior olive neurons, the new active climbing fibers establish synaptic contacts with proximal dendritic spines that bear GluRdelta2s. After, they repress these subunits and displace the parallel fibers to the distal dendritic territory. These findings suggest the following operational principle in the axonal competition for a common target. The Purkinje cells have an intrinsic phenotypic profile which is compatible with the parallel fiber innervation, this mode being operational in targets innervated by a single neuronal population, like the neuromuscular system. An additional input, the climbing fibers, in order to achieve its own territory on the proximal dendrite needs the ability to displace the competitor. Such an inhibition is activity-dependent and the activity needs to be present in order to allow the climbing fiber to maintain its territory, even when the developmental period is over.


Assuntos
Axônios/fisiologia , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Fatores Etários , Animais , Humanos , Células de Purkinje/citologia , Células de Purkinje/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa