Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682621

RESUMO

As a new field of oxidative stress-based therapy, cold physical plasma is a promising tool for several biomedical applications due to its potential to create a broad diversity of reactive oxygen and nitrogen species (RONS). Although proposed, the impact of plasma-derived RONS on the cell membrane lipids and properties is not fully understood. For this purpose, the changes in the lipid bilayer functionality under oxidative stress generated by an argon plasma jet (kINPen) were investigated by electrochemical techniques. In addition, liquid chromatography-tandem mass spectrometry was employed to analyze the plasma-induced modifications on the model lipids. Various asymmetric bilayers mimicking the structure and properties of the erythrocyte cell membrane were transferred onto a gold electrode surface by Langmuir-Blodgett/Langmuir-Schaefer deposition techniques. A strong impact of cholesterol on membrane permeabilization by plasma-derived species was revealed. Moreover, the maintenance of the barrier properties is influenced by the chemical composition of the head group. Mainly the head group size and its hydrogen bonding capacities are relevant, and phosphatidylcholines are significantly more susceptible than phosphatidylserines and other lipid classes, underlining the high relevance of this lipid class in membrane dynamics and cell physiology.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Membrana Celular , Colesterol/química , Bicamadas Lipídicas/química , Estresse Oxidativo , Espécies Reativas de Nitrogênio
2.
medRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38293138

RESUMO

Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.

3.
Free Radic Biol Med ; 207: 212-225, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37490986

RESUMO

Surgical-induced hemostasis is a critical step in the closure of incisions, which is frequently achieved via electrocauterization and subsequent tissue necrotization. The latter is associated with postoperative complications. Recent in vivo work suggested reactive species-producing gas plasma technology as a pro-homeostatic agent acting via platelet activation. However, it remained elusive how platelet activation is linked to lipid and protein oxidation and the reactive species compositions. A direct relation between the reactive species composition and platelet activation was revealed by assessing the production of several reactive species and by using antioxidants. In addition, platelet lipidome and proteome analysis identified significantly regulated key lipids in the platelet activation pathway, such as diacylglycerols and phosphatidylinositol as well as oxylipins like thromboxanes. Lipid oxidation products mainly derived from phosphatidylethanolamine and phosphatidylserine species were observed at modest levels. In addition, oxidative post-translational modifications were identified on key proteins of the hemostasis machinery. This study provides new insights into oxidation-induced platelet activation in general and suggests a potential role of those processes in gas plasma-mediated hemostasis in particular.


Assuntos
Plaquetas , Ativação Plaquetária , Plaquetas/metabolismo , Oxirredução , Antioxidantes/metabolismo , Lipídeos
4.
Anal Methods ; 14(10): 1077-1082, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35201253

RESUMO

Oxidative stress in cellular environments may cause lipid oxidation and membrane degradation. Therefore, studying the degree of lipid membrane morphological changes by reactive oxygen and nitrogen species will be informative in oxidative stress-based therapies. This study introduces the possibility of using scanning electrochemical microscopy as a powerful imaging technique to follow the topographical changes of a solid-supported lipid bilayer model induced by reactive species produced from gas plasma. The introduced strategy is not limited to investigating the effect of reactive species on the lipid bilayer but could be extended to understand the morphological changes of the lipid bilayer due to the action of membrane proteins or antimicrobial peptides.


Assuntos
Bicamadas Lipídicas , Microscopia Eletroquímica de Varredura
5.
Front Cell Infect Microbiol ; 11: 724569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513734

RESUMO

Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo - an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.


Assuntos
Fibrose Cística , Microbiota , Bactérias/genética , Fibrose Cística/complicações , Humanos , Pulmão , Escarro
6.
Chem Phys Lipids ; 226: 104786, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229410

RESUMO

Cold atmospheric plasma (CAP) is an emerging source for the locally defined delivery of reactive species, and its clinical potential has been identified in the control of inflammatory processes, such as acute and chronic wounds, or cancerous lesions. Lipids, due to their localization and chemical structure as ideal targets for oxidative species, are relevant modifiers of physiological processes. Human forehead lipids collected on a target were treated by an argon plasma jet and immediately analyzed by direct-infusion high-resolution tandem mass spectrometry (DI-MS2) or liquid chromatography-tandem MS (RP-LC/MS2). Subsequent data analysis was performed by LipidHunter (University of Leipzig), LipidXplorer (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden), and LipidSearch (Thermo Scientific). With either MS method, all major lipid classes of sebum lipids were detected. Significant differences regarding triacylglycerols (predominantly identified in RP-LC/MS2) and ceramides (predominantly identified in DI-MS2) indicate experimental- or approach-inherent distinctions. A CAP-driven oxidation of triacyclglycerols, ceramides, and cholesteryl esters was detected such as truncations and hydroperoxylations, but at a significantly lower extent than expected. Scavenging of reactive species due to naturally present antioxidants in the samples and the absence of a liquid interphase to allow reactive species deposition by the CAP will have contributed to the limited amount of oxidation products observed. In addition, limitations of the software's capability of identifying unexpected oxidized lipids potentially led to an underestimation of the CAP impact on skin lipids, indicating a need for further software development. With respect to the clinical application of CAP, the result indicates that intact skin with its sebum/epidermal lipid overlay is well protected and that moderate treatment will yield limited (if any) functional consequences in the dermal tissue.


Assuntos
Lipídeos/química , Gases em Plasma/química , Pele/química , Adulto , Cromatografia Líquida , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Espectrometria de Massas em Tandem , Adulto Jovem
7.
Free Radic Biol Med ; 161: 32-49, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33011275

RESUMO

Cold plasma technology is an emerging tool facilitating the spatially controlled delivery of a multitude of reactive species (ROS) to the skin. While the therapeutic efficacy of plasma treatment has been observed in several types of diseases, the fundamental consequences of plasma-derived ROS on skin physiology remain unknown. We aimed to bridge this gap since the epidermal skin barrier and perfusion plays a vital role in health and disease by maintaining homeostasis and protecting from environmental damage. The intact skin of SKH1 mice was plasma-treated in vivo. Gene and protein expression was analyzed utilizing transcriptomics, qPCR, and Western blot. Immunofluorescence aided the analysis of percutaneous skin penetration of curcumin. Tissue oxygenation, perfusion, hemoglobin, and water index was investigated using hyperspectral imaging. Reversed-phase liquid-chromatography/mass spectrometry was performed for the identification of changes in the lipid composition and oxidation. Transcriptomic analysis of plasma-treated skin revealed modulation of genes involved in regulating the junctional network (tight, adherence, and gap junctions), which was confirmed using qPCR, Western blot, and immunofluorescence imaging. Plasma treatment increased the disaggregation of cells in the stratum corneum (SC) concomitant with increased tissue oxygenation, gap junctional intercellular communication, and penetration of the model drug curcumin into the SC preceded by altered oxidation of skin lipids and their composition in vivo. In summary, plasma-derived ROS modify the junctional network, which promoted tissue oxygenation, oxidation of SC-lipids, and restricted penetration of the model drug curcumin, implicating that plasma may provide a novel and sensitive tool of skin barrier regulation.


Assuntos
Gases em Plasma , Animais , Epiderme/metabolismo , Lipídeos , Camundongos , Pele/metabolismo , Absorção Cutânea
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa