Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Cell ; 80(5): 796-809.e9, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33156996

RESUMO

The linkage, length, and architecture of ubiquitin (Ub) chains are all important variables in providing tight control over many biological paradigms. There are clear roles for branched architectures in regulating proteasome-mediated degradation, but the proteins that selectively recognize and process these atypical chains are unknown. Here, using synthetic and enzyme-derived ubiquitin chains along with intact mass spectrometry, we report that UCH37/UCHL5, a proteasome-associated deubiquitinase, cleaves K48 branched chains. The activity and selectivity toward branched chains is markedly enhanced by the proteasomal Ub receptor RPN13/ADRM1. Using reconstituted proteasome complexes, we find that chain debranching promotes degradation of substrates modified with branched chains under multi-turnover conditions. These results are further supported by proteome-wide pulse-chase experiments, which show that the loss of UCH37 activity impairs global protein turnover. Our work therefore defines UCH37 as a debranching deubiquitinase important for promoting proteasomal degradation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética , Ubiquitina Tiolesterase/genética
2.
Bioconjug Chem ; 35(7): 954-962, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38879814

RESUMO

Approaches that leverage orthogonal chemical reactions to generate protein-protein conjugates have expanded access to bespoke chimeras. Although the literature is replete with examples of the semisynthesis of bispecific proteins, few methods exist for the semisynthesis of protein conjugates of higher complexity (i.e., greater than two-protein fusions). The recent emergence of trispecific cell engagers for immune cell redirection therapies necessitates the development of chemical methods for the construction of trispecific proteins that would otherwise be inaccessible via natural protein synthesis. Here, we demonstrate that 3-bromo-5-methylene pyrrolone (3Br-5MP) can be used to effect the facile chemical synthesis of trispecific peptides and proteins with exquisite control over the addition of each monomer. The multimeric complexes maintain epitope functionality both in human cells and upon immobilization. We anticipate that facile access to trispecific proteins using this 3Br-5MP will have broad utility in basic science research and will quicken the pace of research to establish novel, multimeric immune cell redirection therapies.


Assuntos
Proteínas , Humanos , Proteínas/química , Peptídeos/química
3.
Anal Chem ; 95(47): 17416-17423, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37962301

RESUMO

Ubiquitination is a reversible post-translational modification that maintains cellular homeostasis and regulates protein turnover. Deubiquitinases (DUBs) are a large family of proteases that catalyze the removal of ubiquitin (Ub) along with the dismantling and editing of Ub chains. Assessing the activity and selectivity of DUBs is critical for defining physiological functions. Despite numerous methods for evaluating DUB activity, none are capable of assessing activity and selectivity in the context of multicomponent mixtures of native unlabeled Ub conjugates. Here, we report an ion mobility (IM)-based approach for measuring DUB selectivity in the context of unlabeled mixtures of Ub chains. We show that IM-mass spectrometry (IM-MS) can be used to assess the selectivity of DUBs in a time-dependent manner. Moreover, using the branched Ub chain selective DUB UCH37/UCHL5 along with a mixture of Ub trimers, a strong preference for branched Ub trimers bearing K6 and K48 linkages is revealed. Our results demonstrate that IM-MS is a powerful method for evaluating DUB selectivity under conditions more physiologically relevant than single-component mixtures.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitina , Ubiquitina/química , Ubiquitinação , Proteólise , Peptídeo Hidrolases/metabolismo
4.
Chembiochem ; 22(17): 2688-2692, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34060221

RESUMO

Covalently attaching ubiquitin (Ub) to cellular proteins as a post-translational modification can result in altered function of modified proteins. Enzymes regulating Ub as a post-translational modification, such as ligases and deubiquitinases, are challenging to characterize in part due to the low throughput of in-vitro assays. Single-molecule nanopore based assays have the advantage of detecting proteins with high specificity and resolution, and in a label-free, real-time fashion. Here we demonstrate the use of a MspA nanopore for discriminating and quantifying Ub proteins. We further applied the MspA pore to measure the Ub-chain disassembly activity of UCH37, a proteasome associated deubiquitinase. The implementation of this MspA system into nanopore arrays could enable high throughput characterizations of unknown deubiquitinases as well as drug screening against disease related enzymes.


Assuntos
Nanoporos
5.
Anal Biochem ; 550: 84-89, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29698671

RESUMO

Ubiquitin chains regulate distinct signaling events through cooperative interactions with effector proteins and deubiquitinases. Measuring the strength of these interactions is often challenging; either large amounts of material are required or one of the binding partners must be labeled for detection. We sought to develop a label-free method for measuring binding of ubiquitin chains to the proteasome-associated deubiquitinase UCH37 and its binding partner RPN13. The method we describe here is based on a fluorescence polarization competition (FPcomp) assay in which fluorescent monoubiquitin is competed off the UCH37•RPN13 complex by the addition of unlabeled ubiquitin chains. We show that the UCH37•RPN13 complex displays higher affinity toward chains with more than two ubiquitin subunits. Removing the ubiquitin-binding PRU domain of RPN13 does not change affinities. These results suggest UCH37•RPN13 acts to selectively recruit proteins modified with long chains (>2 subunits) to the proteasome for degradation. We also demonstrate that the FPcomp assay is suitable for high-throughput screening, which is important considering both UCH37 and RPN13 are potential targets for cancer therapy.


Assuntos
Glicoproteínas de Membrana/análise , Poliubiquitina/análise , Ubiquitina Tiolesterase/análise , Polarização de Fluorescência/métodos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Poliubiquitina/metabolismo , Ubiquitina Tiolesterase/metabolismo
6.
J Proteome Res ; 16(9): 3363-3369, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28737031

RESUMO

The dynamics of cellular signaling events are tightly regulated by a diverse set of ubiquitin chains. Recent work has suggested that branched ubiquitin chains composed of Lys11 and Lys48 isopeptide linkages play a critical role in regulating cell cycle progression. Yet, endogenous Lys11/Lys48 branched chains could not be detected. By combining a Lys11 linkage specific antibody with high-resolution middle-down mass spectrometry (an approach termed UbiChEM-MS) we sought to identify endogenous Lys11/Lys48 branched ubiquitin chains in cells. Using asynchronous cells, we find that Lys11-linked branched chains can only be detected upon cotreatment with a proteasome and nonselective deubiquitinase inhibitor. Releasing cells from mitotic arrest results in a marked accumulation of Lys11/Lys48 branched chains in which branch points represent ∼3-4% of the total ubiquitin population. This report highlights the utility of UbiChEM-MS in characterizing the architecture of Lys11 Ub chains under various cellular conditions and corroborates the formation of Lys11/Lys48 branched chains during mitosis.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Lisina/metabolismo , Espectrometria de Massas/métodos , Mitose , Poliubiquitina/biossíntese , Complexo de Endopeptidases do Proteassoma/metabolismo , Sequência de Aminoácidos , Aminopiridinas/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/genética , Células HEK293 , Humanos , Leupeptinas/farmacologia , Mitose/efeitos dos fármacos , Nocodazol/farmacologia , Poliubiquitina/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Tiocianatos/farmacologia , Ubiquitina/genética , Ubiquitina/metabolismo
7.
Anal Chem ; 89(8): 4428-4434, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28291339

RESUMO

Ubiquitin (Ub) has a broad functional range that has been ascribed to the formation of an array of polymeric ubiquitin chains. Understanding the precise roles of ubiquitin chains, however, is difficult due to their complex chain topologies. Branched ubiquitin chains are particularly challenging, as multiple modifications on a single ubiquitin preclude the use of standard bottom-up proteomic approaches. Developing methods to overcome these challenges is crucial considering evidence suggesting branched chains regulate the stability of proteins. In this study, we employ Ubiquitin Chain Enrichment Middle-down Mass Spectrometry (UbiChEM-MS) to identify branched chains that cannot be detected using bottom-up proteomic methods. Specifically, we employ tandem ubiquitin binding entities (TUBEs) and the K29-selective Npl4 Zinc Finger 1 (NZF1) domain from the deubiquitinase TRABID to enrich for chains from human cells. Minimal trypsinolysis followed by high resolution mass spectrometric analysis reveals that Ub chain branching can indeed be detected using both Ub binding domains (UBDs) tested at endogenous levels. We find that ∼1% of chains isolated with TUBEs contain Ub branch points, with this value rising to ∼4% after proteasome inhibition. Electron-transfer dissociation (ETD) analysis indicates the presence of K48 in these branched chains. The use of the NZF1 domain reveals that ∼4% of the isolated chains contain branch points with no apparent dependence on proteasome inhibition. Our results demonstrate an effective strategy for detecting and characterizing the dynamics of branched conjugates under different cellular conditions.


Assuntos
Endopeptidases/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina/química , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Endopeptidases/química , Humanos , Ligação Proteica , Ubiquitina/metabolismo , Ubiquitinação , Dedos de Zinco
8.
J Am Chem Soc ; 138(42): 13774-13777, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27723317

RESUMO

Deubiquitylating enzymes (DUBs) remove ubiquitin (Ub) from various cellular proteins and render eukaryotic ubiquitylation a dynamic process. The misregulation of protein ubiquitylation is associated with many human diseases, and there is an urgent need to identify specific DUBs associated with therapeutically relevant targets of Ub. We report the development of two facile selenocysteine-based strategies to generate the DUB probe dehydroalanine (Dha). Optimized oxidative or alkylative elimination of Se yielded Dha at the C-terminus of Ub. The high utility of alkylative elimination, which is compatible with multiple thiols in Ub targets, was demonstrated by generating a probe derived from the Ub ligase tripartite motif protein 25 (TRIM-25). Successful capture of the TRIM-25-associated DUB, ubiquitin-specific protease 15, demonstrated the versatility of our chemical strategy for identifying target-specific DUBs.

9.
Chembiochem ; 17(16): 1525-31, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27256865

RESUMO

Information embedded in different ubiquitin chains is transduced by proteins with ubiquitin-binding domains (UBDs) and erased by a set of hydrolytic enzymes referred to as deubiquitinases (DUBs). Understanding the selectivity of UBDs and DUBs is necessary for decoding the functions of different ubiquitin chains. Critical to these efforts is the access to chemically defined ubiquitin chains bearing site-specific fluorescent labels. One approach toward constructing such molecules involves peptide ligation by sortase (SrtA), a bacterial transpeptidase responsible for covalently attaching cell surface proteins to the cell wall. Here, we demonstrate the utility of SrtA in modifying individual subunits of ubiquitin chains. Using ubiquitin derivatives in which an N-terminal glycine is unveiled after protease-mediated digestion, we synthesized ubiquitin dimers, trimers, and tetramers with different isopeptide linkages. SrtA was then used in combination with fluorescent depsipeptide substrates to effect the modification of each subunit in a chain. By constructing branched ubiquitin chains with individual subunits tagged with a fluorophore, we provide evidence that the ubiquitin-specific protease USP15 prefers ubiquitin trimers but has little preference for a particular isopeptide linkage. Our results emphasize the importance of subunit-specific labeling of ubiquitin chains when studying how DUBs process these chains.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Enzimas Desubiquitinantes/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Biocatálise , Humanos , Conformação Molecular , Subunidades Proteicas/química , Especificidade por Substrato
10.
Nat Methods ; 10(4): 332-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23435260

RESUMO

We describe a protein quantification method called neutron encoding that exploits the subtle mass differences caused by nuclear binding energy variation in stable isotopes. These mass differences are synthetically encoded into amino acids and incorporated into yeast and mouse proteins via metabolic labeling. Mass spectrometry analysis with high mass resolution (>200,000) reveals the isotopologue-embedded peptide signals, permitting quantification. Neutron encoding will enable highly multiplexed proteome analysis with excellent dynamic range and accuracy.


Assuntos
Cromatografia Líquida/métodos , Nêutrons , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/química , Espectrometria de Massas em Tandem/métodos , Isótopos de Carbono , Deutério , Regulação Fúngica da Expressão Gênica , Isótopos de Nitrogênio , Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Biochemistry ; 54(37): 5748-56, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26332921

RESUMO

Protein motion is intimately linked to enzymatic catalysis, yet the stereoelectronic changes that accompany different conformational states of a substrate are poorly defined. Here we investigate the relationship between conformation and stereoelectronic effects of a scissile amide bond. Structural studies have revealed that the C-terminal glycine of ubiquitin and ubiquitin-like proteins adopts a syn (ψ ∼ 0°) or gauche (ψ ∼ ±60°) conformation upon interacting with deubiquitinases/ubiquitin-like proteases. We used hybrid density functional theory and natural bond orbital analysis to understand how the stereoelectronic effects of the scissile bond change as a function of φ and ψ torsion angles. This led to the discovery that when ψ is between 30° and -30° the scissile bond becomes geometrically and electronically deformed. Geometric distortion occurs through pyramidalization of the carbonyl carbon and amide nitrogen. Electronic distortion is manifested by a decrease in the strength of the donor-acceptor interaction between the amide nitrogen and antibonding orbital (π*) of the carbonyl. Concomitant with the reduction in nN → π* delocalization energy, the sp(2) hybrid orbital of the carbonyl carbon becomes richer in p-character, suggesting the syn configuration causes the carbonyl carbon hybrid orbitals to adopt a geometry reminiscent of a tetrahedral-like intermediate. Our work reveals important insights into the role of substrate conformation in activating the reactive carbonyl of a scissile bond. These findings have implications for designing potent active site inhibitors based on the concept of transition state analogues.


Assuntos
Peptídeo Hidrolases/química , Ubiquitinas/química , Glicina/química , Modelos Moleculares , Conformação Proteica , Teoria Quântica , Ubiquitina/química , Proteases Específicas de Ubiquitina/química
12.
Biochemistry ; 53(30): 4979-89, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25023374

RESUMO

Protein ubiquitylation, one of the most prevalent post-translational modifications in eukaryotes, is involved in regulating nearly every cellular signaling pathway. The vast functional range of ubiquitylation has largely been attributed to the formation of a diverse array of polymeric ubiquitin (polyUb) chains. Methods that enable the characterization of these diverse chains are necessary to fully understand how differences in structure relate to function. Here, we describe a method for the detection of enzymatically derived branched polyUb conjugates in which a single Ub subunit is modified by two Ub molecules at distinct lysine residues. Using a middle-down mass spectrometry approach in which restricted trypsin-mediated digestion is coupled with mass spectrometric analysis, we characterize the polyUb chains produced by bacterial effector E3 ligases NleL (non-Lee-encoded effector ligase from enterohemorrhagic Escherichia coli O157:H7) and IpaH9.8 (from Shigella flexneri). Because Ub is largely intact after minimal trypsinolysis, multiple modifications on a single Ub moiety can be detected. Analysis of NleL- and IpaH9.8-derived polyUb chains reveals branch points are present in approximately 10% of the overall chain population. When unanchored, well-defined polyUb chains are added to reaction mixtures containing NleL, longer chains are more likely to be modified internally, forming branch points rather than extending from the end of the chain. These results suggest that middle-down mass spectrometry can be used to assess the extent to which branched polyUb chains are formed by various enzymatic systems and potentially evaluate the presence of these atypical conjugates in cell and tissue extracts.


Assuntos
Espectrometria de Massas/métodos , Multimerização Proteica , Ubiquitina/química , Células HeLa , Humanos , Proteômica/métodos , Ubiquitina/genética , Ubiquitinação/fisiologia
13.
Biochemistry ; 53(19): 3199-217, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24787148

RESUMO

AMSH, a conserved zinc metallo deubiquitinase, controls downregulation and degradation of cell-surface receptors mediated by the endosomal sorting complexes required for transport (ESCRT) machinery. It displays high specificity toward the Lys63-linked polyubiquitin chain, which is used as a signal for ESCRT-mediated endosomal-lysosomal sorting of receptors. Herein, we report the crystal structures of the catalytic domain of AMSH orthologue Sst2 from fission yeast, its ubiquitin (product)-bound form, and its Lys63-linked diubiquitin (substrate)-bound form at 1.45, 1.7, and 2.3 Å, respectively. The structures reveal that the P-side product fragment maintains nearly all the contacts with the enzyme as seen with the P portion (distal ubiquitin) of the Lys63-linked diubiquitin substrate, with additional coordination of the Gly76 carboxylate group of the product with the active-site Zn(2+). One of the product-bound structures described herein is the result of an attempt to cocrystallize the diubiquitin substrate bound to an active site mutant presumed to render the enzyme inactive, instead yielding a cocrystal structure of the enzyme bound to the P-side ubiquitin fragment of the substrate (distal ubiquitin). This fragment was generated in situ from the residual activity of the mutant enzyme. In this structure, the catalytic water is seen placed between the active-site Zn(2+) and the carboxylate group of Gly76 of ubiquitin, providing what appears to be a snapshot of the active site when the product is about to depart. Comparison of this structure with that of the substrate-bound form suggests the importance of dynamics of a flexible flap near the active site in catalysis. The crystal structure of the Thr319Ile mutant of the catalytic domain of Sst2 provides insight into structural basis of microcephaly capillary malformation syndrome. Isothermal titration calorimetry yields a dissociation constant (KD) of 10.2 ± 0.6 µM for the binding of ubiquitin to the enzyme, a value comparable to the KM of the enzyme catalyzing hydrolysis of the Lys63-linked diubiquitin substrate (~20 µM). These results, together with the previously reported observation that the intracellular concentration of free ubiquitin (~20 µM) exceeds that of Lys63-linked polyubiquitin chains, imply that the free, cytosolic form of the enzyme remains inhibited by being tightly bound to free ubiquitin. We propose that when AMSH associates with endosomes, inhibition would be relieved because of ubiquitin binding domains present on its endosomal binding partners that would shift the balance toward better recognition of polyubiquitin chains via the avidity effect.


Assuntos
Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Proteases Específicas de Ubiquitina/química , Ubiquitina/química , Ubiquitinação/fisiologia , Substituição de Aminoácidos , Cristalografia por Raios X , Endossomos/enzimologia , Endossomos/genética , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Zinco
14.
Chembiochem ; 15(11): 1563-8, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24961813

RESUMO

Covalent attachment of ubiquitin to target proteins is one of the most pervasive post-translational modifications in eukaryotes. Target proteins are often modified with polymeric ubiquitin chains of defined lengths and linkages that may further undergo dynamic changes in composition in response to cellular signals. Biochemical characterization of the enzymes responsible for building and destroying ubiquitin chains is often thwarted by the lack of methods for preparation of the appropriate substrates containing probes for biochemical or biophysical studies. We have discovered that a yeast ubiquitin C-terminal hydrolase (Yuh1) also catalyzes transamidation reactions that can be exploited to prepare site-specifically modified polyubiquitin chains produced by thiol-ene chemistry. We have used this chemoenzymatic approach to prepare dual-functionalized ubiquitin chains containing fluorophore and biotin modifications. These dual-functionalized ubiquitin chains enabled the first real-time assay of ubiquitin chain disassembly by a human deubiquitinase (DUB) enzyme by single molecule fluorescence microscopy. In summary, this work provides a powerful new tool for elucidating the mechanisms of DUBs and other ubiquitin processing enzymes.


Assuntos
Endopeptidases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Biocatálise , Endopeptidases/química , Humanos , Microscopia de Fluorescência , Ubiquitina/química , Proteases Específicas de Ubiquitina/química
15.
Nature ; 454(7206): 907-11, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18704089

RESUMO

Non-ribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) found in bacteria, fungi and plants use two different types of thioesterases for the production of highly active biological compounds. Type I thioesterases (TEI) catalyse the release step from the assembly line of the final product where it is transported from one reaction centre to the next as a thioester linked to a 4'-phosphopantetheine (4'-PP) cofactor that is covalently attached to thiolation (T) domains. The second enzyme involved in the synthesis of these secondary metabolites, the type II thioesterase (TEII), is a crucial repair enzyme for the regeneration of functional 4'-PP cofactors of holo-T domains of NRPS and PKS systems. Mispriming of 4'-PP cofactors by acetyl- and short-chain acyl-residues interrupts the biosynthetic system. This repair reaction is very important, because roughly 80% of CoA, the precursor of the 4'-PP cofactor, is acetylated in bacteria. Here we report the three-dimensional structure of a type II thioesterase from Bacillus subtilis free and in complex with a T domain. Comparison with structures of TEI enzymes shows the basis for substrate selectivity and the different modes of interaction of TEII and TEI enzymes with T domains. Furthermore, we show that the TEII enzyme exists in several conformations of which only one is selected on interaction with its native substrate, a modified holo-T domain.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo , Proteínas de Bactérias/biossíntese , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeo Sintases/biossíntese , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
16.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873305

RESUMO

Ubiquitination is a reversible posttranslational modification that maintains cellular homeostasis and regulates protein turnover. Deubiquitinases (DUBs) are a large family of proteases that catalyze the removal of ubiquitin (Ub) along with the dismantling and editing of Ub chains. Assessing the activity and selectivity of DUBs is critical for defining physiological function. Despite numerous methods for evaluating DUB activity, none are capable of assessing activity and selectivity in the context of multicomponent mixtures of native, unlabeled ubiquitin conjugates. Here we report on an ion mobility (IM)-based approach for measuring DUB selectivity in the context of unlabeled mixtures of Ub chains. We show that IM-MS can be used to assess the selectivity of DUBs in a time-dependent manner. Moreover, using the branched Ub chain selective DUB UCH37/UCHL5 along with a mixture of Ub trimers, a strong preference for branched Ub trimers bearing K6 and K48 linkages is revealed. Our results demonstrate that IM coupled with mass spectrometry (IM-MS) is a powerful method for evaluating DUB selectivity under conditions more physiologically relevant than single component mixtures.

17.
J Am Soc Mass Spectrom ; 34(5): 931-938, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014729

RESUMO

The diversity of ubiquitin modifications calls for methods to better characterize ubiquitin chain linkage, length, and morphology. Here, we use multiple linear regression analysis coupled with ion mobility mass spectrometry (IM-MS) to quantify the relative abundance of different ubiquitin dimer isomers. We demonstrate the utility and robustness of this approach by quantifying the relative abundance of different ubiquitin dimers in complex mixtures and comparing the results to the standard, bottom-up ubiquitin AQUA method. Our results provide a foundation for using multiple linear regression analysis and IM-MS to characterize more complex ubiquitin chain architectures.


Assuntos
Ubiquitina , Ubiquitinas , Ubiquitina/química , Espectrometria de Massas/métodos
18.
J Am Chem Soc ; 134(16): 6916-9, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22497214

RESUMO

Chemical methods for modifying proteins can enable studies aimed at uncovering biochemical function. Herein, we describe the use of thiol-ene coupling (TEC) chemistry to report on the function of branched (also referred to as forked) ubiquitin trimers. We show how site-specific isopeptide (Nε-Gly-L-homothiaLys) bonds are forged between two molecules of Ub, demonstrating the power of TEC in protein conjugation. Moreover, we demonstrate that the Nε-Gly-L-homothiaLys isopeptide bond is processed to a similar extent by deubiquitinases (DUBs) as that of a native Nε-Gly-L-Lys isopeptide bond, thereby establishing the utility of TEC in the generation of Ub-Ub linkages. TEC is then applied to the synthesis of branched Ub trimers. Interrogation of these branched derivatives with DUBs reveals that the relative orientation of the two Ub units has a dramatic impact on how they are hydrolyzed. In particular, cleavage of K48C-linkages is suppressed when the central Ub unit is also conjugated through K6C, whereas cleavage proceeds normally when the central unit is conjugated through either K11C or K63C. The results of this work presage a role for branched polymeric Ub chains in regulating linkage-selective interactions.


Assuntos
Carbono-Nitrogênio Liases/metabolismo , Peptídeos/química , Compostos de Sulfidrila/química , Ubiquitina/química , Carbono-Nitrogênio Liases/química , Modelos Moleculares , Estrutura Molecular
20.
Angew Chem Int Ed Engl ; 51(52): 13085-8, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23161800

RESUMO

Linked: a method based on thiol-ene chemistry enables the synthesis and purification of ubiquitin oligomers with ≥4 units. This approach, which employs free-radical polymerization, can be applied towards the synthesis of homogeneous Lys6-linked ubiquitin oligomers currently inaccessible by enzymatic methods. By using these chains, one can study their roles in the ubiquitin proteasome system and the DNA damage response pathway.


Assuntos
Ubiquitina/metabolismo , Humanos , Polimerização , Complexo de Endopeptidases do Proteassoma/metabolismo , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa