Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Angiogenesis ; 17(1): 77-91, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23959107

RESUMO

Arterial and venous specification is critical for establishing and maintaining a functioning vascular system, and defects in key arteriovenous signaling pathways including VEGF (vascular endothelial growth factor) lead to congenital arteriopathies. The activities of VEGF, are in part controlled by heparan sulfate (HS) proteoglycans, significant components of the endothelial glycocalyx. The level of 6-O sulfation on HS polysaccharide chains, that mediate the interaction between HS and VEGFA, is edited at the cell surface by the enzyme SULF1. We investigated the role of sulf1 in vascular development. In zebrafish sulf1 is expressed in the head and tail vasculature, corresponding spatially and temporally with vascular development. Targeted knockdown of sulf1 by antisense morpholinos resulted in severe vascular patterning and maturation defects. 93 % of sulf1 morphants show dysmorphogenesis in arterial development leading to occlusion of the distal aorta and lack of axial and cranial circulation. Co-injection of vegfa165 mRNA rescued circulatory defects. While the genes affecting haematopoiesis are unchanged, expression of several arterial markers downstream of VegfA signalling such as notch and ephrinB2 are severely reduced in the dorsal aorta, with a concomitant increase in expression of the venous markers flt4 in the dorsal aorta of the morphants. Furthermore, in vitro, lack of SULF1 expression downregulates VEGFA-mediated arterial marker expression, confirming that Sulf1 mediates arterial specification by regulating VegfA165 activity. This study provides the first in vivo evidence for the integral role of the endothelial glycocalyx in specifying arterial-venous identity, vascular patterning and arterial integrity, and will help to better understand congenital arteriopathies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Sulfatases/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/metabolismo , Animais , Artérias/embriologia , Artérias/metabolismo , Efrina-B2/imunologia , Efrina-B2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicocálix/genética , Glicocálix/metabolismo , Morfolinos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfatases/antagonistas & inibidores , Sulfatases/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Veias/embriologia , Veias/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
2.
Arterioscler Thromb Vasc Biol ; 31(3): 608-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205989

RESUMO

OBJECTIVE: Decorin and oxidized low-density lipoprotein (Ox-LDL) independently induce osteogenic differentiation of vascular smooth muscle cells (VSMCs). We aimed to determine whether decorin glycosaminoglycan (GAG) chain synthesis contributes to Ox-LDL-induced differentiation and calcification of human VSMCs in vitro. METHODS AND RESULTS: Human VSMCs treated with Ox-LDL to induce oxidative stress showed increased alkaline phosphatase (ALP) activity, accelerated mineralization, and a difference in both decorin GAG chain biosynthesis and CS/DS structure compared with untreated controls. Ox-LDL increased mRNA abundance of both xylosyltransferase (XT)-I, the key enzyme responsible for GAG chain biosynthesis and Msx2, a marker of osteogenic differentiation. Furthermore, downregulation of XT-I expression using small interfering RNA blocked Ox-LDL-induced VSMC mineralization. Adenoviral-mediated overexpression of decorin, but not a mutated unglycanated form, accelerated mineralization of VSMCs, suggesting GAG chain addition on decorin is crucial for the process of differentiation. The decorin-induced VSMC osteogenic differentiation involved activation of the transforming growth factor (TGF)-ß pathway, because it was attenuated by blocking of TGF-ß receptor signaling and because decorin overexpression potentiated phosphorylation of the downstream signaling molecule smad2. CONCLUSIONS: These studies provide direct evidence that oxidative stress-mediated decorin GAG chain synthesis triggers TGF-ß signaling and mineralization of VSMCs in vitro.


Assuntos
Calcinose/metabolismo , Decorina/biossíntese , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fosfatase Alcalina/metabolismo , Células Cultivadas , Decorina/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Estresse Oxidativo , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fosforilação , Interferência de RNA , Proteína Smad2/metabolismo , Fatores de Tempo , UDP Xilose-Proteína Xilosiltransferase
3.
Am J Physiol Heart Circ Physiol ; 301(4): H1487-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21705677

RESUMO

We investigated whether plasma long-chain sphingoid base (LCSB) concentrations are altered by transient cardiac ischemia during percutaneous coronary intervention (PCI) in humans and examined the signaling through the sphingosine-1-phosphate (S1P) cascade as a mechanism underlying the S1P cardioprotective effect in cardiac myocytes. Venous samples were collected from either the coronary sinus (n = 7) or femoral vein (n = 24) of 31 patients at 1 and 5 min and 12 h, following induction of transient myocardial ischemia during elective PCI. Coronary sinus levels of LCSB were increased by 1,072% at 1 min and 941% at 5 min (n = 7), while peripheral blood levels of LCSB were increased by 579% at 1 min, 617% at 5 min, and 436% at 12 h (n = 24). In cultured cardiac myocytes, S1P, sphingosine (SPH), and FTY720, a sphingolipid drug candidate, showed protective effects against CoCl induced hypoxia/ischemic cell injury by reducing lactate dehydrogenase activity. Twenty-five nanomolars of FTY720 significantly increased phospho-Pak1 and phospho-Akt levels by 56 and 65.6% in cells treated with this drug for 15 min. Further experiments demonstrated that FTY720 triggered nitric oxide release from cardiac myocytes is through pertussis toxin-sensitive phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase signaling. In ex vivo hearts, ischemic preconditioning was cardioprotective in wild-type control mice (Pak1(f/f)), but this protection appeared to be ineffective in cardiomyocyte-specific Pak1 knockout (Pak1(cko)) hearts. The present study provides the first direct evidence of the behavior of plasma sphingolipids following transient cardiac ischemia with dramatic and early increases in LCSB in humans. We also demonstrated that S1P, SPH, and FTY720 have protective effects against hypoxic/ischemic cell injury, likely a Pak1/Akt1 signaling cascade and nitric oxide release. Further study on a mouse model of cardiac specific deletion of Pak1 demonstrates a crucial role of Pak1 in cardiac protection against ischemia/reperfusion injury.


Assuntos
Cardiotônicos , Lisofosfolipídeos/farmacologia , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/fisiologia , Proteína Oncogênica v-akt/fisiologia , Esfingosina/análogos & derivados , Quinases Ativadas por p21/fisiologia , Adulto , Idoso , Angioplastia Coronária com Balão , Animais , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/fisiopatologia , Biotransformação , Western Blotting , Hipóxia Celular/fisiologia , Sobrevivência Celular/fisiologia , Oclusão Coronária/metabolismo , Feminino , Cloridrato de Fingolimode , Humanos , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Proteína Oncogênica v-akt/genética , Toxina Pertussis/farmacologia , Propilenoglicóis/farmacologia , Ratos , Esfingolipídeos/metabolismo , Esfingosina/farmacologia , Quinases Ativadas por p21/genética
4.
Am J Pathol ; 177(4): 1946-57, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20813973

RESUMO

Multiple osteochondromas (MO) is an autosomal dominant disorder caused by germline mutations in EXT1 and/or EXT2. In contrast, solitary osteochondroma (SO) is nonhereditary. Products of the EXT gene are involved in heparan sulfate (HS) biosynthesis. In this study, we investigated whether osteochondromas arise via either loss of heterozygosity (2 hits) or haploinsufficiency. An in vitro three-dimensional chondrogenic pellet model was used to compare heterozygous bone marrow-derived mesenchymal stem cells (MSCs EXT(wt/-)) of MO patients with normal MSCs and the corresponding tumor specimens (presumed EXT(-/-)). We demonstrated a second hit in EXT in five of eight osteochondromas. HS chain length and structure, in vitro chondrogenesis, and EXT expression levels were identical in both EXT(wt/-) and normal MSCs. Immunohistochemistry for HS, HS proteoglycans, and HS-dependent signaling pathways (eg, TGF-ß/BMP, Wnt, and PTHLH) also showed no differences. The cartilaginous cap of osteochondroma contained a mixture of HS-positive and HS-negative cells. Because a heterozygous EXT mutation does not affect chondrogenesis, EXT, HS, or downstream signaling pathways in MSCs, our results refute the haploinsufficiency theory. We found a second hit in 63% of analyzed osteochondromas, supporting the hypothesis that osteochondromas arise via loss of heterozygosity. The detection of the second hit may depend on the ratio of HS-positive (normal) versus HS-negative (mutated) cells in the cartilaginous cap of the osteochondroma.


Assuntos
Exostose Múltipla Hereditária/genética , Haploinsuficiência/genética , Perda de Heterozigosidade/genética , N-Acetilglucosaminiltransferases/genética , Adolescente , Adulto , Western Blotting , Medula Óssea/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Citometria de Fluxo , Mutação em Linhagem Germinativa/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Heterozigoto , Humanos , Técnicas Imunoenzimáticas , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator de Crescimento Transformador beta
5.
Dev Dyn ; 239(12): 3312-23, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20981828

RESUMO

The 6-O-endosulfatase enzymes (Sulfs) edit the final sulfation pattern and function of heparan sulfate (HS) by removal of 6-O-sulfate groups from the chain. To date, two mammalian sulf genes have been identified that regulate many signalling pathways during embryonic development. In zebrafish a sulf1 ortholog and duplicate copies of the mammalian sulf2 gene, sulf2a and sulf2, have been identified, which contain conserved motifs characteristic of vertebrate sulf genes. Zebrafish sulf1 and sulf2a are broadly expressed in the central nervous system (CNS) and non-neuronal tissue including heart, somite boundaries, olfactory system, and otic vesicle, whereas sulf2 expression is almost entirely restricted to the CNS. The duplicate copies of sulf2 have distinct expression patterns, which together mirror that of mouse sulf2, suggesting duplication in the teleost lineage has been followed by subfunctionalisation, whereby both genes need to be preserved by selection to ensure the ancestral gene's expression profile and function is maintained.


Assuntos
Proteínas de Peixe-Zebra/metabolismo , Animais , Sistema Nervoso Central/embriologia , Biologia Computacional , Embrião não Mamífero/metabolismo , Coração/embriologia , Heparitina Sulfato/metabolismo , Hibridização In Situ , Condutos Olfatórios/embriologia , Proteoglicanas/metabolismo , Proteínas de Peixe-Zebra/genética
6.
Neuron ; 44(6): 947-60, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15603738

RESUMO

Retinal ganglion cell (RGC) axons are topographically ordered in the optic tract according to their retinal origin. In zebrafish dackel (dak) and boxer (box) mutants, some dorsal RGC axons missort in the optic tract but innervate the tectum topographically. Molecular cloning reveals that dak and box encode ext2 and extl3, glycosyltransferases implicated in heparan sulfate (HS) biosynthesis. Both genes are required for HS synthesis, as shown by biochemical and immunohistochemical analysis, and are expressed maternally and then ubiquitously, likely playing permissive roles. Missorting in box can be rescued by overexpression of extl3. dak;box double mutants show synthetic pathfinding phenotypes that phenocopy robo2 mutants, suggesting that Robo2 function requires HS in vivo; however, tract sorting does not require Robo function, since it is normal in robo2 null mutants. This genetic evidence that heparan sulfate proteoglycan function is required for optic tract sorting provides clues to begin understanding the underlying molecular mechanisms.


Assuntos
Axônios/metabolismo , Proteoglicanas de Heparan Sulfato/biossíntese , N-Acetilglucosaminiltransferases/fisiologia , Vias Visuais/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Animais , Proteoglicanas de Heparan Sulfato/genética , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/biossíntese , N-Acetilglucosaminiltransferases/genética , Células Ganglionares da Retina/metabolismo , Vias Visuais/embriologia , Peixe-Zebra
7.
Int J Biochem Cell Biol ; 35(7): 1052-5, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12672474

RESUMO

The CXC chemokine platelet factor 4 (PF4) appears to inhibit tumour growth through its modulation of the activity of angiogenic growth factors. We investigated the heparan sulphate-dependent mechanism of PF4 inhibition of fibroblast growth factor 2 (FGF-2). The ability of PF4 to bind simultaneously to both FGF-2 and HS was assessed using affinity gel chromatography. Thirty-three to forty-two percent more HS bound to the FGF-2 affinity gel in the presence of PF4 than with HS alone. Protection assays showed that PF4 and FGF-2 bound to adjacent or overlapping sites together covering a 12 kDa stretch of HS. This study suggests that the three components may form a ternary complex. PF4 released at sites of angiogenesis may bind to angiogenic growth factors attached to endothelial cell surface HS to disrupt or prevent them from interacting with their signalling receptors. Manipulation of this mechanism may prove useful for clinical intervention of angiogenesis.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Fator Plaquetário 4/metabolismo , Células 3T3 , Animais , Sítios de Ligação , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Técnicas In Vitro , Camundongos
8.
Aging Cell ; 12(1): 139-47, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23190312

RESUMO

Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit-Hill cells and circulating angiogenic cells are subject to age-associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age-related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age-associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2-O-sulfated-uronic acid, N, 6-O-sulfated-glucosamine (UA[2S]-GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood-derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age-related vascular pathologies.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores Etários , Apoptose/fisiologia , Células Sanguíneas/citologia , Processos de Crescimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Sangue Fetal/citologia , Humanos , Longevidade
9.
Front Physiol ; 4: 130, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23781203

RESUMO

BACKGROUND: Ventricular tachyarrhythmias are the most common and often the first manifestation of coronary heart disease and lead to sudden cardiac death (SCD). Early detection/identification of acute myocardial ischaemic injury at risk for malignant ventricular arrhythmias in patients remains an unmet medical need. In the present study, we examined the sphingolipids level after transient cardiac ischaemia following temporary coronary artery occlusion during percutaneous coronary intervention (PCI) in patients and determined the role of sphingolipids level as a novel marker for early detection of human myocardial ischaemic injury. METHODS AND RESULTS: Venous samples were collected from either the coronary sinus (n = 7) or femoral vein (n = 24) from 31 patients aged 40-73 years-old at 1, 5 min, and 12 h, following elective PCI. Plasma sphingolipids levels were assessed by HPLC. At 1 min coronary sinus levels of sphingosine 1-phosphate (S1P), sphingosine (SPH), and sphinganine (SA) were increased by 314, 115, and 614%, respectively (n = 7), while peripheral blood levels increased by 79, 68, and 272% (n = 24). By 5 min, coronary sinus S1P and SPH levels increased further (720%, 117%), as did peripheral levels of S1P alone (792%). Where troponin T was detectable at 12 h (10 of 31), a strong correlation was found with peak S1P (R (2) = 0.818; P < 0.0001). CONCLUSION: For the first time, we demonstrate the behavior of plasma sphingolipids following transient cardiac ischaemia in humans. The observation supports the important role of sphingolipids level as a potential novel marker of transient or prolonged myocardial ischaemia.

10.
ACS Chem Biol ; 8(10): 2331-8, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23972127

RESUMO

Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analogue of the HS constituent GlcNAc and studied the compound's metabolic fate and its effect on angiogenesis. The 4-deoxy analogue was activated intracellularly into UDP-4-deoxy-GlcNAc, and HS expression was inhibited up to ∼96% (IC50 = 16 µM). HS chain size was reduced, without detectable incorporation of the 4-deoxy analogue, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors such as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Microinjection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All of these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis, which hampers pro-angiogenic signaling and neo-vessel formation.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Heparitina Sulfato/genética , Neovascularização Patológica/fisiopatologia , Uridina Difosfato N-Acetilglicosamina/análogos & derivados , Uridina Difosfato N-Acetilglicosamina/farmacologia , Animais , Galinhas , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/genética , Heparitina Sulfato/biossíntese , Heparitina Sulfato/metabolismo , Ácido Idurônico/química , Transdução de Sinais/efeitos dos fármacos , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa