Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513609

RESUMO

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Assuntos
Brassicaceae , Frutas , Regulação da Expressão Gênica de Plantas , Germinação , Sementes , Temperatura , Germinação/genética , Germinação/fisiologia , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Brassicaceae/genética , Brassicaceae/fisiologia , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Ácido Abscísico/metabolismo
2.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38044809

RESUMO

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Assuntos
Arabidopsis , Nucleosídeos , Nucleosídeos/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Uridina/metabolismo , Arabidopsis/genética
3.
Plant J ; 116(6): 1825-1841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37682018

RESUMO

Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.


Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fluorescência , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Hormônios/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Cell Physiol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619131

RESUMO

Brassinosteroids (BRs) are plant steroidal hormones that play crucial roles in plant growth and development. Accurate quantification of BRs in plant tissues is essential for understanding their biological functions. This study presents a comprehensive overview of the latest methods used for the quantification of BRs in plants. We discuss the principles, advantages, and limitations of various analytical techniques, including immunoassays, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) that are used for the detection and quantification of BRs from complex plant matrices. We also explore the use of isotopically labeled internal standards to improve the accuracy and reliability of BR quantification.

5.
Plant Physiol ; 192(2): 1584-1602, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36861637

RESUMO

The view on the role of light during seed germination stems mainly from studies with Arabidopsis (Arabidopsis thaliana), where light is required to initiate this process. In contrast, white light is a strong inhibitor of germination in other plants, exemplified by accessions of Aethionema arabicum, another member of Brassicaceae. Their seeds respond to light with gene expression changes of key regulators converse to that of Arabidopsis, resulting in opposite hormone regulation and prevention of germination. However, the photoreceptors involved in this process in A. arabicum remain unknown. Here, we screened a mutant collection of A. arabicum and identified koy-1, a mutant that lost light inhibition of germination due to a deletion in the promoter of HEME OXYGENASE 1, the gene for a key enzyme in the biosynthesis of the phytochrome chromophore. koy-1 seeds were unresponsive to red- and far-red light and hyposensitive under white light. Comparison of hormone and gene expression between wild type and koy-1 revealed that very low light fluence stimulates germination, while high irradiance of red and far-red light is inhibitory, indicating a dual role of phytochromes in light-regulated seed germination. The mutation also affects the ratio between the 2 fruit morphs of A. arabicum, suggesting that light reception via phytochromes can fine-tune several parameters of propagation in adaptation to conditions in the habitat.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Arabidopsis/metabolismo , Germinação/genética , Brassicaceae/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sementes/genética , Hormônios/metabolismo
6.
Plant Cell Environ ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809156

RESUMO

In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.

7.
Physiol Plant ; 176(3): e14311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715208

RESUMO

Although microalgae have only recently been recognized as part of the plant and soil microbiome, their application as biofertilizers has a tradition in sustainable crop production. Under consideration of their ability to produce the plant growth-stimulating hormone cytokinin (CK), known to also induce pathogen resistance, we have assessed the biocontrol ability of CK-producing microalgae. All pro- and eukaryotic CK-producing microalgae tested were able to enhance the tolerance of tobacco against Pseudomonas syringae pv. tabaci (PsT) infection. Since Chlamydomonas reinhardtii (Cre) proved to be the most efficient, we functionally characterized its biocontrol ability. We employed the CRISPR-Cas9 system to generate the first knockouts of CK biosynthetic genes in microalgae. Specifically, we targeted Cre Lonely Guy (LOG) and isopentenyltransferase (IPT) genes, the key genes of CK biosynthesis. While Cre wild-type exhibits a strong protection, the CK-deficient mutants have a reduced ability to induce plant defence. The degree of protection correlates with the CK levels, with the IPT mutants showing less protection than the LOG mutants. Gene expression analyses showed that Cre strongly stimulates tobacco resistance through defence gene priming. This study functionally verifies that Cre primes defence responses with CK, which contributes to the robustness of the effect. This work contributes to elucidate microalgae-mediated plant defence priming and identifies the role of CKs. In addition, these results underscore the potential of CK-producing microalgae as biologicals in agriculture by combining biofertilizer and biocontrol ability for sustainable and environment-friendly crop management.


Assuntos
Sistemas CRISPR-Cas , Chlamydomonas reinhardtii , Citocininas , Resistência à Doença , Nicotiana , Doenças das Plantas , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/imunologia , Citocininas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Resistência à Doença/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Mutação
8.
Chem Biodivers ; 21(4): e202400235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412304

RESUMO

Over the last decades, soft corals have been proven a rich source of biologically active compounds, featuring a wide range of chemical structures. Herein, we investigated the chemistry of an alcyonarian of the genus Lemnalia (Neptheidae), specimens of which were collected from the coral reefs near Al Lith, on the south-west coast of Saudi Arabia. A series of chromatographic separations led to the isolation of 31 sesquiterpenes, featuring mainly the nardosinane and neolemnane carbon skeletons, among which three (13, 14 and 28) are new natural products. The metabolites isolated in sufficient amounts were evaluated in vitro in human tumor and non-cancerous cell lines for a number of biological activities, including their cytotoxic, anti-inflammatory, anti-angiogenic, and neuroprotective activities, as well as for their effect on androgen receptor (AR)-regulated transcription. Among the tested metabolites, compound 12 showed comparable neuroprotective activity to the positive control N-acetylcysteine, albeit at a 10-fold lower concentration.


Assuntos
Antozoários , Antineoplásicos , Sesquiterpenos , Animais , Humanos , Arábia Saudita , Oceano Índico , Sesquiterpenos/química , Antozoários/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
9.
J Neurochem ; 167(2): 168-182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37680022

RESUMO

Neurodegenerative diseases are a broad heterogeneous group affecting the nervous system. They are characterized, from a pathophysiological perspective, by the selective involvement of a subpopulation of nerve cells with a consequent clinical picture of a disease. Clinical diagnoses of neurodegenerative diseases are quite challenging and often not completely accurate because of their marked heterogeneity and frequently overlapping clinical pictures. Efforts are being made to define sufficiently specific and sensitive markers for individual neurodegenerative diseases or groups of diseases in order to increase the accuracy and speed of clinical diagnosis. Thus said, this present research aimed to identify biomarkers in the cerebrospinal fluid (CSF) and serum (α-synuclein [α-syn], tau protein [t-tau], phosphorylated tau protein [p-tau], ß-amyloid [Aß], clusterin, chromogranin A [chromogrA], cystatin C [cyst C], neurofilament heavy chains [NFH], phosphorylated form of neurofilament heavy chains [pNF-H], and ratio of tau protein/amyloid beta [Ind tau/Aß]) that could help in the differential diagnosis and differentiation of the defined groups of α-synucleinopathies and four-repeat (4R-) tauopathies characterized by tau protein isoforms with four microtubule-binding domains. In this study, we analyzed a cohort of 229 patients divided into four groups: (1) Parkinson's disease (PD) + dementia with Lewy bodies (DLB) (n = 82), (2) multiple system atrophy (MSA) (n = 25), (3) progressive supranuclear palsy (PSP) + corticobasal syndrome (CBS) (n = 30), and (4) healthy controls (HC) (n = 92). We also focused on analyzing the biomarkers in relation to each other with the intention of determining whether they are useful in distinguishing among individual proteinopathies. Our results indicate that the proposed set of biomarkers, when evaluated in CSF, is likely to be useful for the differential diagnosis of MSA versus 4RT. However, these biomarkers do not seem to provide any useful diagnostic information when assessed in blood serum.

10.
Plant Cell Physiol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847120

RESUMO

B-Box-containing zinc finger transcription factors (BBX) are involved in light-mediated growth, affecting processes such as hypocotyl elongation in Arabidopsis thaliana. However, the molecular and hormonal framework that regulates plant growth through BBX proteins is incomplete. Here, we demonstrate that BBX21 inhibits the hypocotyl elongation through the brassinosteroid (BR) pathway. BBX21 reduces the sensitivity to 24-epiBL, a synthetic active BR, principally at very-low concentrations in simulated shade. The biosynthesis profile of BRs showed that two active BR -brassinolide (BL) and 28-homobrassinolide (28-homoBL)- and 8 of 11 intermediates can be repressed by BBX21 under white light (WL) or simulated shade. Furthermore, BBX21 represses the expression of CYTOCHROME P450 90B1 (DWF4/CYP90B1), BRASSINOSTEROID-6-OXIDASE 1 (BR6OX1, CYP85A1) and BR6OX2 (CYP85A2) genes involved in the BR biosynthesis in WL while specifically promoting DWF4 and PHYB ACTIVATION TAGGED SUPPRESSOR 1 (CYP2B1/BAS1) expression in WL supplemented with far-red (WL+FR), a treatment that simulates shade. In addition, BBX21 represses BR signalling genes such as PACLOBUTRAZOL RESISTANCE1 (PRE1), PRE3 and ARABIDOPSIS MYB-LIKE 2 (MYBL2), and auxin-related and expansin genes, such as INDOLE-3-ACETIC ACID INDUCIBLE 1 (IAA1), IAA4 and EXPANSIN 11 (EXP11) in short-term shade. By a genetic approach we found that BBX21 acts genetically upstream of BRASSINAZOLE-RESISTANT 1 (BZR1) for the promotion of DWF4 and BAS1 gene expression in shade. We propose that BBX21 integrates the BR homeostasis and shade-light signalling allowing the fine-tuning of hypocotyl elongation in Arabidopsis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa