Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Haematologica ; 106(11): 2927-2939, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054136

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common Non-Hodgkin's lymphoma and is characterized by a remarkable heterogeneity with diverse variants that can be identified histologically and molecularly. Large-scale gene expression profiling studies have identified the germinal center B-cell (GCB-) and activated B-cell (ABC-) subtypes. Standard chemo-immunotherapy remains standard front line therapy, curing approximately two thirds of patients. Patients with refractory disease or those who relapse after salvage treatment have an overall poor prognosis highlighting the need for novel therapeutic strategies. Transducin ß-like protein 1 (TBL1) is an exchange adaptor protein encoded by the TBL1X gene and known to function as a master regulator of the Wnt signalling pathway by binding to ß-CATENIN and promoting its downstream transcriptional program. Here, we show that, unlike normal B-cells, DLBCL cells express abundant levels of TBL1 and its overexpression correlates with poor clinical outcome regardless of DLBCL molecular subtype. Genetic deletion of TBL1 and pharmacological approach using tegavivint, a first-in-class small molecule targeting TBL1 (Iterion Therapeutics), promotes DLBCL cell death in vitro and in vivo. Through an integrated genomic, biochemical, and pharmacologic analyses, we characterized a novel, ß-CATENIN independent, post-transcriptional oncogenic function of TBL1 in DLBCL where TBL1 modulates the stability of key oncogenic proteins such as PLK1, MYC, and the autophagy regulatory protein BECLIN-1 through its interaction with a SKP1-CUL1-F-box (SCF) protein supercomplex. Collectively, our data provide the rationale for targeting TBL1 as a novel therapeutic strategy in DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Transducina , Carcinogênese , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Recidiva Local de Neoplasia , Prognóstico , Transducina/genética
2.
Genes Dev ; 27(13): 1447-61, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824538

RESUMO

Macroautophagy (autophagy hereafter) degrades and recycles proteins and organelles to support metabolism and survival in starvation. Oncogenic Ras up-regulates autophagy, and Ras-transformed cell lines require autophagy for mitochondrial function, stress survival, and engrafted tumor growth. Here, the essential autophagy gene autophagy-related-7 (atg7) was deleted concurrently with K-ras(G12D) activation in mouse models for non-small-cell lung cancer (NSCLC). atg7-deficient tumors accumulated dysfunctional mitochondria and prematurely induced p53 and proliferative arrest, which reduced tumor burden that was partly relieved by p53 deletion. atg7 loss altered tumor fate from adenomas and carcinomas to oncocytomas-rare, predominantly benign tumors characterized by the accumulation of defective mitochondria. Surprisingly, lipid accumulation occurred in atg7-deficient tumors only when p53 was deleted. atg7- and p53-deficient tumor-derived cell lines (TDCLs) had compromised starvation survival and formed lipidic cysts instead of tumors, suggesting defective utilization of lipid stores. atg7 deficiency reduced fatty acid oxidation (FAO) and increased sensitivity to FAO inhibition, indicating that with p53 loss, Ras-driven tumors require autophagy for mitochondrial function and lipid catabolism. Thus, autophagy is required for carcinoma fate, and autophagy defects may be a molecular basis for the occurrence of oncocytomas. Moreover, cancers require autophagy for distinct roles in metabolism that are oncogene- and tumor suppressor gene-specific.


Assuntos
Adenoma Oxífilo/fisiopatologia , Autofagia , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Genes ras/fisiologia , Metabolismo dos Lipídeos , Neoplasias Pulmonares/fisiopatologia , Animais , Linhagem Celular Tumoral , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Genes p53/genética , Homeostase , Longevidade/genética , Camundongos , Mitocôndrias/patologia , Células Tumorais Cultivadas
3.
Cancer ; 125(15): 2693-2703, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980399

RESUMO

BACKGROUND: Desmoid tumors (DTs) are rare and understudied fibroblastic lesions that are frequently recurrent and locally invasive. DT patients often experience chronic pain, organ dysfunction, decrease in quality of life, and even death. METHODS: Sorafenib has emerged as a promising therapeutic strategy, which has led to the first randomized phase 3 clinical trial devoted to DTs. Concurrently, we conducted a comprehensive analysis of sorafenib efficacy in a large panel of desmoid cell strains to probe for response mechanism. RESULTS: We found distinctive groups of higher- and lower-responder cells. Clustering the lower-responder group, we observed that CTNNB1 mutation was determinant of outcome. Our results revealed that a lower dose of sorafenib was able to inhibit cell viability, migration, and invasion of wild-type and T41A-mutated DTs. Apoptosis induction was observed in those cells after treatment with sorafenib. On the other hand, the lower dose of sorafenib was not able to inhibit cell viability, migration, or invasion or to induce apoptosis in the S45F-mutated DTs. The investigation of autophagy showed the dependency of S45F-mutated DTs on this pathway as a part of cell survival mechanism. Significantly, when autophagy was inhibited genetically or pharmacologically in the S45F mutant cell strains, sensitivity to sorafenib was restored. CONCLUSIONS: Our findings suggest that the response to sorafenib differs when comparing S45F-mutated DTs and T41A-mutated or wild-type DTs. Furthermore, the combination of hydroxychloroquine and sorafenib enhances the antiproliferative and proapoptotic effects in S45F-mutated DT cells, suggesting that profiling ß-catenin status could guide clinical management of desmoid patients who are considering sorafenib treatment.


Assuntos
Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Fibromatose Agressiva/tratamento farmacológico , Sorafenibe/uso terapêutico , Antineoplásicos/farmacologia , Feminino , Humanos , Masculino , Sorafenibe/farmacologia
4.
Genes Dev ; 25(5): 460-70, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21317241

RESUMO

Autophagy is a catabolic pathway used by cells to support metabolism in response to starvation and to clear damaged proteins and organelles in response to stress. We report here that expression of a H-ras(V12) or K-ras(V12) oncogene up-regulates basal autophagy, which is required for tumor cell survival in starvation and in tumorigenesis. In Ras-expressing cells, defective autophagosome formation or cargo delivery causes accumulation of abnormal mitochondria and reduced oxygen consumption. Autophagy defects also lead to tricarboxylic acid (TCA) cycle metabolite and energy depletion in starvation. As mitochondria sustain viability of Ras-expressing cells in starvation, autophagy is required to maintain the pool of functional mitochondria necessary to support growth of Ras-driven tumors. Human cancer cell lines bearing activating mutations in Ras commonly have high levels of basal autophagy, and, in a subset of these, down-regulating the expression of essential autophagy proteins impaired cell growth. As cancers with Ras mutations have a poor prognosis, this "autophagy addiction" suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.


Assuntos
Autofagia/fisiologia , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Genes ras/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Células HCT116 , Humanos , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Inanição
5.
Cancer Cell Int ; 18: 89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983640

RESUMO

BACKGROUND: Sarcomas are malignant heterogeneous tumors of mesenchymal derivation. Dedifferentiated liposarcoma (DDLPS) is aggressive with recurrence in 80% and metastasis in 20% of patients. We previously found that miR-133a was significantly underexpressed in liposarcoma tissues. As this miRNA has recently been shown to be a tumor suppressor in many cancers, the objective of this study was to characterize the biological and molecular consequences of miR-133a underexpression in DDLPS. METHODS: Real-time PCR was used to evaluate expression levels of miR-133a in human DDLPS tissue, normal fat tissue, and human DDLPS cell lines. DDLPS cells were stably transduced with miR-133a vector to assess the effects in vitro on proliferation, cell cycle, cell death, migration, and metabolism. A Seahorse Bioanalyzer system was also used to assess metabolism in vivo by measuring glycolysis and oxidative phosphorylation (OXPHOS) in subcutaneous xenograft tumors from immunocompromised mice. RESULTS: miR-133a expression was significantly decreased in human DDLPS tissue and cell lines. Enforced expression of miR-133a decreased cell proliferation, impacted cell cycle progression kinetics, decreased glycolysis, and increased OXPHOS. There was no significant effect on cell death or migration. Using an in vivo xenograft mouse study, we showed that tumors with increased miR-133a expression had no difference in tumor growth compared to control, but did exhibit an increase in OXPHOS metabolic respiration. CONCLUSIONS: Based on our collective findings, we propose that in DDPLS, loss of miR-133a induces a metabolic shift due to a reduction in oxidative metabolism favoring a Warburg effect in DDLPS tumors, but this regulation on metabolism was not sufficient to affect DDPLS.

6.
Cell Mol Life Sci ; 73(19): 3711-8, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27173057

RESUMO

Liposarcoma (LPS) is the most common soft tissue sarcoma and accounts for approximately 20 % of all adult sarcomas. Current treatment modalities (surgery, chemotherapy, and radiotherapy) all have limitations; therefore, molecularly driven studies are needed to improve the identification and increased understanding of genetic and epigenetic deregulations in LPS if we are to successfully target specific tumorigenic drivers. It can be anticipated that such biology-driven therapeutics will improve treatments by selectively deleting cancer cells while sparing normal tissues. This review will focus on several therapeutically actionable molecular markers identified in well-differentiated LPS and dedifferentiated LPS, highlighting their potential clinical applicability.


Assuntos
Lipossarcoma/terapia , Terapia de Alvo Molecular , Animais , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Humanos , Lipossarcoma/genética , Lipossarcoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
7.
iScience ; 26(8): 107408, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554459

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high metastasis and therapeutic resistance. Activating transcription factor 4 (ATF4), a master regulator of cellular stress, is exploited by cancer cells to survive. Prior research and data reported provide evidence that high ATF4 expression correlates with worse overall survival in PDAC. Tomatidine, a natural steroidal alkaloid, is associated with inhibition of ATF4 signaling in multiple diseases. Here, we discovered that in vitro and in vivo tomatidine treatment of PDAC cells inhibits tumor growth. Tomatidine inhibited nuclear translocation of ATF4 and reduced the transcriptional binding of ATF4 with downstream promoters. Tomatidine enhanced gemcitabine chemosensitivity in 3D ECM-hydrogels and in vivo. Tomatidine treatment was associated with induction of ferroptosis signaling validated by increased lipid peroxidation, mitochondrial biogenesis, and decreased GPX4 expression in PDAC cells. This study highlights a possible therapeutic approach utilizing a plant-derived metabolite, tomatidine, to target ATF4 activity in PDAC.

8.
PLoS One ; 17(10): e0276047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240209

RESUMO

Mutation in the CTNNB1 gene, leading to a deregulation of the WTN/ß-catenin pathway, is a common feature of desmoid tumors (DTs). Many ß-catenin inhibitors have recently been tested in clinical studies; however, BC2059 (also referred as Tegavivint), a selective inhibitor of nuclear ß-catenin that works through binding TBL-1, is the only one being evaluated in a clinical study, specifically for treatment of desmoid tumor patients. Preclinical studies on BC2059 have shown activity in multiple myeloma, acute myeloid leukemia and osteosarcoma. Our preclinical studies provide data on the efficacy of BC2059 in desmoid cell lines, which could help provide insight regarding antitumor activity of this therapy in desmoid tumor patients. In vitro activity of BC2059 was evaluated using desmoid tumor cell lines. Ex vivo activity of BC2059 was assessed using an explant tissue culture model. Pharmacological inhibition of the nuclear ß-catenin activity using BC2059 markedly inhibited cell viability, migration and invasion of mutated DT cells, but with lower effect on wild-type DTs. The decrease in cell viability of mutated DT cells caused by BC2059 was due to apoptosis. Treatment with BC2059 led to a reduction of ß-catenin-associated TBL1 in all mutated DT cells, resulting in a reduction of nuclear ß-catenin. mRNA and protein levels of AXIN2, a ß-catenin target gene, were also found to be downregulated after BC2059 treatment. Taken together, our results demonstrate that nuclear ß-catenin inhibition using BC2059 may be a novel therapeutic strategy for desmoid tumor treatment, especially in patients with CTNNB1 mutation.


Assuntos
Neoplasias Ósseas , Fibromatose Agressiva , Fibromatose Agressiva/patologia , Humanos , Mutação , RNA Mensageiro/genética , Via de Sinalização Wnt , beta Catenina/metabolismo
9.
Oncogene ; 39(34): 5589-5600, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32651460

RESUMO

Wnt/ß-catenin signaling is one of the key cascades regulating embryogenesis and tissue homeostasis; it has also been intimately associated with carcinogenesis. This pathway is deregulated in several tumors, including colorectal cancer, breast cancer, and desmoid tumors. It has been shown that CTNNB1 exon 3 mutations are associated with an aggressive phenotype in several of these tumor types and may be associated with therapeutic tolerance. Desmoid tumors typically have a stable genome with ß-catenin mutations as a main feature, making these tumors an ideal model to study the changes associated with different types of ß-catenin mutations. Here, we show that the apoptosis mechanism is deregulated in ß-catenin S45F mutants, resulting in decreased induction of apoptosis in these cells. Our findings also demonstrate that RUNX3 plays a pivotal role in the inhibition of apoptosis found in the ß-catenin S45F mutants. Restoration of RUNX3 overcomes this inhibition in the S45F mutants, highlighting it as a potential therapeutic target for malignancies harboring this specific CTNNB1 mutation. While the regulatory effect of RUNX3 in ß-catenin is already known, our results suggest the possibility of a feedback loop involving these two genes, with the CTNNB1 S45F mutation downregulating expression of RUNX3, thus providing additional possible novel therapeutic targets for tumors having deregulated Wnt/ß-catenin signaling induced by this mutation.


Assuntos
Neoplasias Abdominais/genética , Polipose Adenomatosa do Colo/genética , Apoptose/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Fibromatose Agressiva/genética , Mutação de Sentido Incorreto , Via de Sinalização Wnt/genética , beta Catenina/genética , Neoplasias Abdominais/metabolismo , Neoplasias Abdominais/patologia , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia , Linhagem Celular Tumoral , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo , Fibromatose Agressiva/metabolismo , Fibromatose Agressiva/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , beta Catenina/metabolismo
10.
Nat Commun ; 10(1): 2943, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270333

RESUMO

Mutations exclusively in equilibrative nucleoside transporter 3 (ENT3), the only intracellular nucleoside transporter within the solute carrier 29 (SLC29) gene family, cause an expanding spectrum of human genetic disorders (e.g., H syndrome, PHID syndrome, and SHML/RDD syndrome). Here, we identify adult stem cell deficits that drive ENT3-related abnormalities in mice. ENT3 deficiency alters hematopoietic and mesenchymal stem cell fates; the former leads to stem cell exhaustion, and the latter leads to breaches of mesodermal tissue integrity. The molecular pathogenesis stems from the loss of lysosomal adenosine transport, which impedes autophagy-regulated stem cell differentiation programs via misregulation of the AMPK-mTOR-ULK axis. Furthermore, mass spectrometry-based metabolomics and bioenergetics studies identify defects in fatty acid utilization, and alterations in mitochondrial bioenergetics can additionally propel stem cell deficits. Genetic, pharmacologic and stem cell interventions ameliorate ENT3-disease pathologies and extend the lifespan of ENT3-deficient mice. These findings delineate a primary pathogenic basis for the development of ENT3 spectrum disorders and offer critical mechanistic insights into treating human ENT3-related disorders.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Adenosina/metabolismo , Adenilato Quinase/metabolismo , Células-Tronco Adultas/ultraestrutura , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagia , Transporte Biológico , Diferenciação Celular , Autorrenovação Celular , Metabolismo Energético , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fenótipo , Ribonucleotídeos/farmacologia , Transdução de Sinais , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa