Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5035, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028516

RESUMO

Non-compressible hemorrhage is an unmet clinical challenge that accounts for high mortality in trauma. Rapid pressurized blood flows under hemorrhage impair the function and integrity of hemostatic agents and the adhesion of bioadhesive sealants. Here, we report the design and performance of bioinspired microstructured bioadhesives, formed with a macroporous tough xerogel infused with functional liquids. The xerogel can rapidly absorb interfacial fluids such as whole blood and promote blood clotting, while the infused liquids facilitate interfacial bonding, sealing, and antibacterial function. Their synergy enables the bioadhesives to form tough adhesion on ex vivo human and porcine tissues and diverse engineered surfaces without the need for compression, as well as on-demand instant removal and storage stability. We demonstrate a significantly improved hemostatic efficacy and biocompatibility in rats and pigs compared to non-structured counterparts and commercial products. This work opens new avenues for the development of bioadhesives and hemostatic sealants.


Assuntos
Hemostáticos , Adesivos Teciduais , Animais , Materiais Biocompatíveis , Hemorragia , Hemostasia , Humanos , Ratos , Suínos
2.
ACS Appl Mater Interfaces ; 13(31): 37849-37861, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34313124

RESUMO

Ionotronic hydrogels find wide applications in flexible electronics, wearable/implantable devices, soft robotics, and human-machine interfaces. Their performance and practical translation have been bottlenecked by poor adhesiveness, limited mechanical properties, and the lack of biological functions. The remedies are often associated with complex formulations and sophisticated processing. Here, we report a rational design and facile synthesis of ionotronic tough adhesives (i-TAs), which have excellent mechanical, physical, electrical, and biological properties and promise high scalability and translational potential. They consist of an interpenetrating network with high-density amine groups and highly mobile chains, which enable intrinsic adhesiveness, self-healing, ionic stability, cytocompatibility, and antimicrobial functions. The i-TAs in both pristine and swollen states possess high toughness, stretchability, and strong adhesion to diverse substrates such as tissues and elastomers. The superior mechanical performance is achieved simultaneously with high ionic conductivity and stability in electrolyte solutions. We further demonstrate the use of i-TAs as wearable devices, strain sensors, and sensory sealants. This work is expected to open avenues for new ionotronics with novel functions and stimulate the development and translation of ionotronics.


Assuntos
Adesivos/química , Hidrogéis/química , Resinas Acrílicas/química , Adesividade , Quitosana/química , Condutividade Elétrica , Humanos , Teste de Materiais , Monitorização Fisiológica/instrumentação , Movimento , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Resistência à Tração , Dispositivos Eletrônicos Vestíveis
3.
Mater Horiz ; 7(9): 2336-2347, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33841881

RESUMO

Cell-laden scaffolds of architecture and mechanics that mimic those of the host tissues are important for a wide range of biomedical applications but remain challenging to bioprint. To address these challenges, we report a new method called triggered micropore-forming bioprinting. The approach can yield cell-laden scaffolds of defined architecture and interconnected pores over a range of sizes, encompassing that of many cell types. The viscoelasticity of the bioprinted scaffold can match that of biological tissues and be tuned independently of porosity and stiffness. The bioprinted scaffold also exhibits superior mechanical robustness despite high porosity. The bioprinting method and the resulting scaffolds support cell spreading, migration, and proliferation. The potential of the 3D bioprinting system is demonstrated for vocal fold tissue engineering and as an in vitro cancer model. Other possible applications are foreseen for tissue repair, regenerative medicine, organ-on-chip, drug screening, organ transplantation, and disease modeling.


Assuntos
Bioimpressão/métodos , Hidrogéis/uso terapêutico , Neoplasias/terapia , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Materiais Biocompatíveis , Humanos , Técnicas In Vitro , Porosidade , Impressão Tridimensional , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa