Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34481949

RESUMO

Cyclotriazadisulfonamide (CADA) inhibits the cotranslational translocation of type I integral membrane protein human CD4 (huCD4) across the endoplasmic reticulum in a signal peptide (SP)-dependent way. Previously, sortilin was identified as a secondary substrate for CADA but showed reduced CADA sensitivity as compared with huCD4. Here, we performed a quantitative proteomic study on the crude membrane fraction of human T-cells to analyze how many proteins are sensitive to CADA. To screen for these proteins, we employed stable isotope labeling by amino acids in cell culture technique in combination with quantitative MS on CADA-treated human T-lymphoid SUP-T1 cells expressing high levels of huCD4. In line with our previous reports, our current proteomic analysis (data available via ProteomeXchange with identifier PXD027712) demonstrated that only a very small subset of proteins is depleted by CADA. Our data also confirmed that cellular expression of both huCD4 and sortilin are affected by CADA treatment of SUP-T1 cells. Furthermore, three additional targets for CADA are identified, namely, endoplasmic reticulum lectin 1 (ERLEC1), inactive tyrosine-protein kinase 7 (PTK7), and DnaJ homolog subfamily C member 3 (DNAJC3). Western blot and flow cytometry analysis of ERLEC1, PTK7, and DNAJC3 protein expression validated susceptibility of these substrates to CADA, although with varying degrees of sensitivity. Additional cell-free in vitro translation/translocation data demonstrated that the new substrates for CADA carry cleavable SPs that are targets for the cotranslational translocation inhibition exerted by CADA. Thus, our quantitative proteomic analysis demonstrates that ERLEC1, PTK7, and DNAJC3 are validated additional substrates of CADA; however, huCD4 remains the most sensitive integral membrane protein for the endoplasmic reticulum translocation inhibitor CADA. Furthermore, to our knowledge, CADA is the first compound that specifically interferes with only a very small subset of SPs and does not affect signal anchor sequences.


Assuntos
Proteínas de Membrana/metabolismo , Sulfonamidas/farmacologia , Linfócitos T/metabolismo , Linhagem Celular , Retículo Endoplasmático , Humanos , Marcação por Isótopo , Proteômica , Especificidade por Substrato
2.
Antiviral Res ; 213: 105587, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36977434

RESUMO

Despite the vaccination campaigns for COVID-19, we still cannot control the spread of SARS-CoV-2, as evidenced by the ongoing circulation of the Omicron variants of concern. This highlights the need for broad-spectrum antivirals to further combat COVID-19 and to be prepared for a new pandemic with a (re-)emerging coronavirus. An interesting target for antiviral drug development is the fusion of the viral envelope with host cell membranes, a crucial early step in the replication cycle of coronaviruses. In this study, we explored the use of cellular electrical impedance (CEI) to quantitatively monitor morphological changes in real time, resulting from cell-cell fusion elicited by SARS-CoV-2 spike. The impedance signal in CEI-quantified cell-cell fusion correlated with the expression level of SARS-CoV-2 spike in transfected HEK293T cells. For antiviral assessment, we validated the CEI assay with the fusion inhibitor EK1 and measured a concentration-dependent inhibition of SARS-CoV-2 spike mediated cell-cell fusion (IC50 value of 0.13 µM). In addition, CEI was used to confirm the fusion inhibitory activity of the carbohydrate-binding plant lectin UDA against SARS-CoV-2 (IC50 value of 0.55 µM), which complements prior in-house profiling activities. Finally, we explored the utility of CEI in quantifying the fusogenic potential of mutant spike proteins and in comparing the fusion efficiency of SARS-CoV-2 variants of concern. In summary, we demonstrate that CEI is a powerful and sensitive technology that can be applied to studying the fusion process of SARS-CoV-2 and to screening and characterizing fusion inhibitors in a label-free and non-invasive manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Impedância Elétrica , Células HEK293 , Glicoproteína da Espícula de Coronavírus/química , Fusão de Membrana , Antivirais/farmacologia , Antivirais/química , Antirretrovirais/farmacologia
3.
Sci Adv ; 9(9): eadf0797, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867692

RESUMO

During cotranslational translocation, the signal peptide of a nascent chain binds Sec61 translocon to initiate protein transport through the endoplasmic reticulum (ER) membrane. Our cryo-electron microscopy structure of ribosome-Sec61 shows binding of an ordered heterotetrameric translocon-associated protein (TRAP) complex, in which TRAP-γ is anchored at two adjacent positions of 28S ribosomal RNA and interacts with ribosomal protein L38 and Sec61α/γ. Four transmembrane helices (TMHs) of TRAP-γ cluster with one C-terminal helix of each α, ß, and δ subunits. The seven TMH bundle helps position a crescent-shaped trimeric TRAP-α/ß/δ core in the ER lumen, facing the Sec61 channel. Further, our in vitro assay establishes the cyclotriazadisulfonamide derivative CK147 as a translocon inhibitor. A structure of ribosome-Sec61-CK147 reveals CK147 binding the channel and interacting with the plug helix from the lumenal side. The CK147 resistance mutations surround the inhibitor. These structures help in understanding the TRAP functions and provide a new Sec61 site for designing translocon inhibitors.


Assuntos
Proteínas de Ligação ao Cálcio , Ribossomos , Canais de Translocação SEC , Microscopia Crioeletrônica
4.
Antiviral Res ; 203: 105342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595082

RESUMO

Despite the great success of the administered vaccines against SARS-CoV-2, the virus can still spread, as evidenced by the current circulation of the highly contagious Omicron variant. This emphasizes the additional need to develop effective antiviral countermeasures. In the context of early preclinical studies for antiviral assessment, robust cellular infection systems are required to screen drug libraries. In this study, we reported the implementation of a human glioblastoma cell line, stably expressing ACE2, in a SARS-CoV-2 cytopathic effect (CPE) reduction assay. These glioblastoma cells, designated as U87.ACE2+, expressed ACE2 and cathepsin B abundantly, but had low cellular levels of TMPRSS2 and cathepsin L. The U87.ACE2+ cells fused highly efficiently and quickly with SARS-CoV-2 spike expressing cells. Furthermore, upon infection with SARS-CoV-2 wild-type virus, the U87.ACE2+ cells displayed rapidly a clear CPE that resulted in complete cell lysis and destruction of the cell monolayer. By means of several readouts we showed that the U87.ACE2+ cells actively replicate SARS-CoV-2. Interestingly, the U87.ACE2+ cells could be successfully implemented in an MTS-based colorimetric CPE reduction assay, providing IC50 values for Remdesivir and Nirmatrelvir in the (low) nanomolar range. Lastly, the U87.ACE2+ cells were consistently permissive to all tested SARS-CoV-2 variants of concern, including the current Omicron variant. Thus, ACE2 expressing glioblastoma cells are highly permissive to SARS-CoV-2 with productive viral replication and with the induction of a strong CPE that can be utilized in high-throughput screening platforms.


Assuntos
Tratamento Farmacológico da COVID-19 , Glioblastoma , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Vacinas contra COVID-19 , Linhagem Celular , Glioblastoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Biotechniques ; 72(6): 245-254, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445605

RESUMO

Basic and antiviral research on SARS-CoV-2 rely on cellular assays of virus replication in vitro. In addition, accurate detection of virus-infected cells and released virus particles is needed to study virus replication and to profile new candidate antiviral drugs. Here, by flow cytometry, we detect SARS-CoV-2 infection at single cell level and distinguish infected Vero E6 cells from uninfected bystander cells. Furthermore, based on the viral nucleocapsid expression, subpopulations of infected cells that are in an early or late phase of viral replication can be differentiated. Importantly, this flow cytometric technique complements our duplex RT-qPCR detection of viral E and N, and it can be applied to all current SARS-CoV-2 variants of concern, including the highly mutated Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , Chlorocebus aethiops , Citometria de Fluxo , Humanos , SARS-CoV-2/genética , Células Vero
6.
Antiviral Res ; 200: 105294, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337896

RESUMO

Despite recent advancements in the development of vaccines and monoclonal antibody therapies for Ebola virus disease, treatment options remain limited. Moreover, management and containment of Ebola virus outbreaks is often hindered by the remote nature of the locations in which the outbreaks originate. Small-molecule compounds offer the advantage of being relatively cheap and easy to produce, transport and store, making them an interesting modality for the development of novel therapeutics against Ebola virus disease. Furthermore, the repurposing of small-molecule compounds, previously developed for alternative applications, can aid in reducing the time needed to bring potential therapeutics from bench to bedside. For this purpose, the Medicines for Malaria Venture provides collections of previously developed small-molecule compounds for screening against other infectious diseases. In this study, we used biologically contained Ebola virus to screen over 4,200 small-molecule drugs and drug-like compounds provided by the Medicines for Malaria Venture (i.e., the Pandemic Response Box and the COVID Box) and the Centre for Drug Design and Discovery (CD3, KU Leuven, Belgium). In addition to confirming known Ebola virus inhibitors, illustrating the validity of our screening assays, we identified eight novel selective Ebola virus inhibitors. Although the inhibitory potential of these compounds remains to be validated in vivo, they represent interesting compounds for the study of potential interventions against Ebola virus disease and might serve as a basis for the development of new therapeutics.


Assuntos
COVID-19 , Ebolavirus , Doença pelo Vírus Ebola , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus de DNA , Humanos
7.
Antiviral Res ; 207: 105426, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183903

RESUMO

Comparable to the related Ebola virus, Marburg virus is an emerging zoonotic pathogen that causes hemorrhagic fever with a high mortality rate. Therefore, handling of Ebola virus and Marburg virus is limited to biosafety level 4 facilities, of which only a limited number exists worldwide. However, researchers have developed several virus alternatives that are safe to handle in lower biosafety settings. One particularly interesting approach is the engineering of biologically contained Ebola virus by removing an essential gene from the virus genome and providing this missing gene in trans in a specific cell line. Because the virus is confined to this specific cell line, this results in a system that is safe to handle. So far, Ebola virus is the only virus for which biological containment has been reported. Here, we describe the first successful rescue of biologically contained Marburg virus and demonstrate that biological containment is also feasible for other filoviruses. Specifically, we describe the development of containment cell lines for Marburg virus through lentiviral transduction and show the growth and safety characteristics of eGFP-expressing, biologically contained Marburg virus in these cell lines. Additionally, we exploited this newly established Marburg virus system to screen over 500 compounds from available libraries. Lastly, we also validated the applicability of our biologically contained Marburg virus system in a 384-well format, to further illustrate the usefulness of this novel system as an alternative for high-throughput MARV screening of compound libraries.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Febres Hemorrágicas Virais , Doença do Vírus de Marburg , Marburgvirus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Ebolavirus/genética , Doença pelo Vírus Ebola/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus/fisiologia
8.
Front Cell Infect Microbiol ; 12: 989534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111239

RESUMO

Urtica dioica agglutinin (UDA) is a carbohydrate-binding small monomeric protein isolated from stinging nettle rhizomes. It inhibits replication of a broad range of viruses, including coronaviruses, in multiple cell types, with appealing selectivity. In this work, we investigated the potential of UDA as a broad-spectrum antiviral agent against SARS-CoV-2. UDA potently blocks transduction of pseudotyped SARS-CoV-2 in A549.ACE2+-TMPRSS2 cells, with IC50 values ranging from 0.32 to 1.22 µM. Furthermore, UDA prevents viral replication of the early Wuhan-Hu-1 strain in Vero E6 cells (IC50 = 225 nM), but also the replication of SARS-CoV-2 variants of concern, including Alpha, Beta and Gamma (IC50 ranging from 115 to 171 nM). In addition, UDA exerts antiviral activity against the latest circulating Delta and Omicron variant in U87.ACE2+ cells (IC50 values are 1.6 and 0.9 µM, respectively). Importantly, when tested in Air-Liquid Interface (ALI) primary lung epithelial cell cultures, UDA preserves antiviral activity against SARS-CoV-2 (20A.EU2 variant) in the nanomolar range. Surface plasmon resonance (SPR) studies demonstrated a concentration-dependent binding of UDA to the viral spike protein of SARS-CoV-2, suggesting interference of UDA with cell attachment or subsequent virus entry. Moreover, in additional mechanistic studies with cell-cell fusion assays, UDA inhibited SARS-CoV-2 spike protein-mediated membrane fusion. Finally, pseudotyped SARS-CoV-2 mutants with N-glycosylation deletions in the S2 subunit of the spike protein remained sensitive to the antiviral activity of UDA. In conclusion, our data establish UDA as a potent fusion inhibitor for the current variants of SARS-CoV-2.


Assuntos
COVID-19 , Urtica dioica , Enzima de Conversão de Angiotensina 2 , Antirretrovirais , Antivirais/farmacologia , Carboidratos , Európio , Humanos , Receptores de Superfície Celular , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Urtica dioica/metabolismo , Proteínas Virais
9.
Antiviral Res ; 185: 104977, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220335

RESUMO

Marburg virus (MARV) is the only known pathogenic filovirus not belonging to the genus Ebolavirus. Minigenomes have proven a useful tool to study MARV, but all existing MARV minigenomes are dependent on the addition of an exogenous T7 RNA polymerase to drive minigenome expression. However, exogenous expression of a T7 polymerase is not always feasible and can act as a confounding factor in compound screening assays. We have developed an alternative minigenome that is controlled by the natively expressed RNA polymerase II. We demonstrate here the characteristics of this new system and its applicability in a wide range of cell types. Our system shows a clear concentration-dependent activity and shows comparable activity to the existing T7 polymerase-based system at higher concentrations, also in difficult-to-transfect cell lines. In addition, we show that our system can be used for compound screening in a 96-well format, thereby providing an attractive alternative to previously developed MARV minigenomes.


Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Marburgvirus/efeitos dos fármacos , Marburgvirus/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Quirópteros , Chlorocebus aethiops , Cricetinae , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Rim/citologia , Regiões Promotoras Genéticas , Transcrição Gênica , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa