Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 182: 107729, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773750

RESUMO

Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the 'typical' genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be key.


Assuntos
Genoma Mitocondrial , Octopodiformes , Animais , Octopodiformes/genética , Filogenia , Teorema de Bayes , Mitocôndrias/genética , RNA de Transferência
2.
Mol Ecol ; 21(11): 2775-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22494503

RESUMO

Repeated cycles of glaciation have had major impacts on the distribution of genetic diversity of the Antarctic marine fauna. During glacial periods, ice cover limited the amount of benthic habitat on the continental shelf. Conversely, more habitat and possibly altered seaways were available during interglacials when the ice receded and the sea level was higher. We used microsatellites and partial sequences of the mitochondrial cytochrome oxidase 1 gene to examine genetic structure in the direct-developing, endemic Southern Ocean octopod Pareledone turqueti sampled from a broad range of areas that circumvent Antarctica. We find that, unusually for a species with poor dispersal potential, P. turqueti has a circumpolar distribution and is also found off the islands of South Georgia and Shag Rocks. The overriding pattern of spatial genetic structure can be explained by hydrographic (with ocean currents both facilitating and hindering gene flow) and bathymetric features. The Antarctic Peninsula region displays a complex population structure, consistent with its varied topographic and oceanographic influences. Genetic similarities between the Ross and Weddell Seas, however, are interpreted as a persistent historic genetic signature of connectivity during the hypothesized Pleistocene West Antarctic Ice Sheet collapses. A calibrated molecular clock indicates two major lineages within P. turqueti, a continental lineage and a sub-Antarctic lineage, that diverged in the mid-Pliocene with no subsequent gene flow. Both lineages survived subsequent major glacial cycles. Our data are indicative of potential refugia at Shag Rocks and South Georgia and also around the Antarctic continent within the Ross Sea, Weddell Sea and off Adélie Land. The mean age of mtDNA diversity within these main continental lineages coincides with Pleistocene glacial cycles.


Assuntos
Variação Genética , Genética Populacional , Octopodiformes/genética , Animais , Regiões Antárticas , DNA Mitocondrial , Ecossistema , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Fluxo Gênico , Camada de Gelo , Repetições de Microssatélites , Dados de Sequência Molecular , Filogeografia
3.
Aquat Toxicol ; 206: 114-122, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30472480

RESUMO

Tetrodotoxin is a potent non-proteinaceous neurotoxin, which is commonly found in the marine environment. Synthesised by bacteria, tetrodotoxin has been isolated from the tissues of several genera including pufferfish, salamanders and octopus. Believed to provide a defensive function, the independent evolution of tetrodotoxin sequestration is poorly understood in most species. Two mechanisms of tetrodotoxin resistance have been identified to date, tetrodotoxin binding proteins in the circulatory system and mutations to voltage gated sodium channels, the binding target of tetrodotoxin with the former potentially succeeding the latter in evolutionary time. This review focuses on the evolution of tetrodotoxin acquisition, in particular how it may have occurred within the blue-ringed octopus genus (Hapalochlaena) and the subsequent impact on venom evolution.


Assuntos
Evolução Biológica , Octopodiformes/classificação , Octopodiformes/metabolismo , Tetrodotoxina/metabolismo , Animais , Octopodiformes/genética , Canais de Sódio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Mar Genomics ; 37: 1-17, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28970064

RESUMO

The biodiversity, ecosystem services and climate variability of the Antarctic continent and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas and first steps in their implementation were clustered into eight themes. These ranged from scale problems, through risk maps, and organism/ecosystem responses to multiple environmental changes and evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in Antarctic research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of Antarctic and global ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.


Assuntos
Organismos Aquáticos/fisiologia , Ecossistema , Pesquisa Interdisciplinar , Regiões Antárticas , Biodiversidade , Mudança Climática , Congressos como Assunto , Ecologia , Genômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa