Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 81(2): 289-302, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38583492

RESUMO

BACKGROUND & AIMS: Polyploidy in hepatocytes has been proposed as a genetic mechanism to buffer against transcriptional dysregulation. Here, we aim to demonstrate the role of polyploidy in modulating gene regulatory networks in hepatocytes during ageing. METHODS: We performed single-nucleus RNA sequencing in hepatocyte nuclei of different ploidy levels isolated from young and old wild-type mice. Changes in the gene expression and regulatory network were compared to three independent strains that were haploinsufficient for HNF4A, CEBPA or CTCF, representing non-deleterious perturbations. Phenotypic characteristics of the liver section were additionally evaluated histologically, whereas the genomic allele composition of hepatocytes was analysed by BaseScope. RESULTS: We observed that ageing in wild-type mice results in nuclei polyploidy and a marked increase in steatosis. Haploinsufficiency of liver-specific master regulators (HFN4A or CEBPA) results in the enrichment of hepatocytes with tetraploid nuclei at a young age, affecting the genomic regulatory network, and dramatically suppressing ageing-related steatosis tissue wide. Notably, these phenotypes are not the result of subtle disruption to liver-specific transcriptional networks, since haploinsufficiency in the CTCF insulator protein resulted in the same phenotype. Further quantification of genotypes of tetraploid hepatocytes in young and old HFN4A-haploinsufficient mice revealed that during ageing, tetraploid hepatocytes lead to the selection of wild-type alleles, restoring non-deleterious genetic perturbations. CONCLUSIONS: Our results suggest a model whereby polyploidisation leads to fundamentally different cell states. Polyploid conversion enables pleiotropic buffering against age-related decline via non-random allelic segregation to restore a wild-type genome. IMPACT AND IMPLICATIONS: The functional role of hepatocyte polyploidisation during ageing is poorly understood. Using single-nucleus RNA sequencing and BaseScope approaches, we have studied ploidy dynamics during ageing in murine livers with non-deleterious genetic perturbations. We have identified that hepatocytes present different cellular states and the ability to buffer ageing-associated dysfunctions. Tetraploid nuclei exhibit robust transcriptional networks and are better adapted to genomically overcome perturbations. Novel therapeutic interventions aimed at attenuating age-related changes in tissue function could be exploited by manipulation of ploidy dynamics during chronic liver conditions.


Assuntos
Envelhecimento , Hepatócitos , Poliploidia , Animais , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Camundongos , Envelhecimento/fisiologia , Envelhecimento/genética , Redes Reguladoras de Genes , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Haploinsuficiência , Senescência Celular/genética , Senescência Celular/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia
2.
J Vis Exp ; (190)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36571404

RESUMO

The liver is a complex and heterogenous tissue responsible for carrying out many critical physiological functions, such as the maintenance of energy homeostasis and the metabolism of xenobiotics, among others. These tasks are performed through tight coordination between hepatic parenchymal and non-parenchymal cells. Additionally, various metabolic activities are confined to specific areas of the hepatic lobule-a phenomenon called liver zonation. Recent advances in single-cell sequencing technologies have empowered researchers to investigate tissue heterogeneity at a single-cell resolution. In many complex tissues, including the liver, harsh enzymatic and/or mechanical dissociation protocols can negatively affect the viability or the quality of the single-cell suspensions needed to comprehensively characterize this organ in health and disease. This paper describes a robust and reproducible protocol for isolating nuclei from frozen, archived liver tissues. This method yields high-quality nuclei that are compatible with downstream, single-cell omics approaches, including single-nucleus RNA-seq, assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), as well as multimodal omics (joint RNA-seq and ATAC-seq). This method has been successfully used for the isolation of nuclei from healthy and diseased human, mouse, and non-human primate frozen liver samples. This approach allows the unbiased isolation of all the major cell types in the liver and, therefore, offers a robust methodology for studying the liver at the single-cell resolution.


Assuntos
Núcleo Celular , Multiômica , Animais , Camundongos , Núcleo Celular/metabolismo , Cromatina/metabolismo , Congelamento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fígado
3.
Waste Manag ; 119: 72-81, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045489

RESUMO

Due to the extensive use of plastics, their quantity in the environment is constantly increasing, which creates a global problem. In the present study, we sought to isolate, test and identify Antarctic microorganisms which possess the ability to biodegrade bioplastics such as poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBS) and poly(butylene succinate-co-butylene adipate) (PBSA) at low temperatures. 161 bacterial and 38 fungal isolates were isolated from 22 Antarctic soil samples. Among them, 92.16% of bacterial and 77.27% of fungal isolates formed a clear zone on emulsified PBSA, 98.04% and 81.82% on PBS and 100% and 77.27% on PCL as an additive to minimal medium at 20 °C. Based on the 16S and 18S rRNA sequences, bacterial strains were identified as species belonging to Pseudomonas and Bacillus and fungal strains as species belonging to Geomyces, Sclerotinia, Fusarium and Mortierella, while the yeast strain was identified as Hansenula anomala. In the biodegradation process conducted under laboratory conditions at 14, 20 and 28 °C, Sclerotinia sp. B11IV and Fusarium sp. B3'M strains showed the highest biodegradation activity at 20 °C (49.68% for PBSA and 33.7% for PCL, 45.99% for PBSA and 49.65% for PCL, respectively). The highest biodegradation rate for Geomyces sp. B10I was noted at 14 °C (25.67% for PBSA and 5.71% for PCL), which suggested a preference for lower temperatures (at 20 °C the biodegradation rate was only 11.34% for PBSA, and 4.46% for PCL). These data showed that microorganisms isolated from Antarctic regions are good candidates for effective plastic degradation at low temperatures.


Assuntos
Plásticos , Poliésteres , Biodegradação Ambiental , Fungos/genética , Saccharomycetales
4.
AMB Express ; 7(1): 148, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28697585

RESUMO

The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

5.
Sci Rep ; 7(1): 15991, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167443

RESUMO

Although the size-frequency distributions of icebergs can provide insight into how they disintegrate, our understanding of this process is incomplete. Fundamentally, there is a discrepancy between iceberg power-law size-frequency distributions observed at glacial calving fronts and lognormal size-frequency distributions observed globally within open waters that remains unexplained. Here we use passive seismic monitoring to examine mechanisms of iceberg disintegration as a function of drift. Our results indicate that the shift in the size-frequency distribution of iceberg sizes observed is a product of fracture-driven iceberg disintegration and dimensional reductions through melting. We suggest that changes in the characteristic size-frequency scaling of icebergs can be explained by the emergence of a dominant set of driving processes of iceberg degradation towards the open ocean. Consequently, the size-frequency distribution required to model iceberg distributions accurately must vary according to distance from the calving front.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa