Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Part Fibre Toxicol ; 21(1): 16, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509617

RESUMO

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Assuntos
Catepsina B , Lipopolissacarídeos , Masculino , Humanos , Camundongos , Animais , Catepsina B/metabolismo , Catepsina B/farmacologia , Lipopolissacarídeos/farmacologia , Ensaios de Triagem em Larga Escala , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos , Citocinas/metabolismo , Interleucina-1beta/metabolismo
2.
Toxicol Pathol ; 50(3): 329-343, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416103

RESUMO

With advances in nanotechnology, engineered nanomaterial applications are a rapidly growing sector of the economy. Some nanomaterials can reach the brain through nose-to-brain transport. This transport creates concern for potential neurotoxicity of insoluble nanomaterials and a need for toxicity screening tests that detect nose-to-brain transport. Such tests can involve intranasal instillation of aqueous suspensions of nanomaterials in dispersion media that limit particle agglomeration. Unfortunately, protein and some elements in existing dispersion media are suboptimal for potential nose-to-brain transport of nanomaterials because olfactory transport has size- and ion-composition requirements. Therefore, we designed a protein-free dispersion media containing phospholipids and amino acids in an isotonic balanced electrolyte solution, a solution for nasal and olfactory transport (SNOT). SNOT disperses hexagonal boron nitride nanomaterials with a peak particle diameter below 100 nm. In addition, multiwalled carbon nanotubes (MWCNTs) in an established dispersion medium, when diluted with SNOT, maintain dispersion with reduced albumin concentration. Using stereomicroscopy and microscopic examination of plastic sections, dextran dyes dispersed in SNOT are demonstrated in the neuroepithelium of the nose and olfactory bulb of B6;129P2-Omptm3Mom/MomJ mice after intranasal instillation in SNOT. These findings support the potential for SNOT to disperse nanomaterials in a manner permitting nose-to-brain transport for neurotoxicity studies.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Administração Intranasal , Animais , Encéfalo/metabolismo , Camundongos , Nanoestruturas/toxicidade , Bulbo Olfatório , Testes de Toxicidade
3.
Part Fibre Toxicol ; 18(1): 47, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34923995

RESUMO

BACKGROUND: Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS: All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION: Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.


Assuntos
Nanofibras , Nanotubos de Carbono , Fibrose Pulmonar , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanofibras/toxicidade , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente
4.
Part Fibre Toxicol ; 17(1): 40, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787867

RESUMO

BACKGROUND: Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs. incinerated nano-enabled thermoplastic composites on two in vitro pulmonary models. Ultrafine particles released from thermally decomposed virgin polycarbonate or polyurethane, and their carbon nanotube (CNT)-enabled composites were collected and used for acute in vitro exposure to primary human small airway epithelial cell (pSAEC) and human bronchial epithelial cell (Beas-2B) models. Post-exposure, both cell lines were assessed for cytotoxicity, proliferative capacity, intracellular ROS generation, genotoxicity, and mitochondrial membrane potential. RESULTS: The treated Beas-2B cells demonstrated significant dose-dependent cellular responses, as well as parent matrix-dependent and CNT-dependent sensitivity. Cytotoxicity, enhancement in reactive oxygen species, and dissipation of ΔΨm caused by incinerated polycarbonate were significantly more potent than polyurethane analogues, and CNT filler enhanced the cellular responses compared to the incinerated parent particles. Such effects observed in Beas-2B were generally higher in magnitude compared to pSAEC at treatments examined, which was likely attributable to differences in respective lung cell types. CONCLUSIONS: Whilst the effect of the treatments on the distal respiratory airway epithelia remains limited in interpretation, the current in vitro respiratory bronchial epithelia model demonstrated profound sensitivity to the test particles at depositional doses relevant for occupational cohorts.


Assuntos
Poluentes Atmosféricos/toxicidade , Incineração , Nanotubos de Carbono/química , Material Particulado/toxicidade , Plásticos/toxicidade , Brônquios , Linhagem Celular , Dano ao DNA , Células Epiteliais , Estresse Oxidativo , Espécies Reativas de Oxigênio
5.
Chem Res Toxicol ; 32(12): 2445-2458, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31698904

RESUMO

Incorporation of engineered nanomaterials (ENMs) into nanocomposites using advanced manufacturing strategies is set to revolutionize diverse technologies. Of these, organomodified nanoclays (ONCs; i.e., smectite clays with different organic coatings) act as nanofillers in applications ranging from automotive to aerospace and biomedical systems. Recent toxicological evaluations increased awareness that exposure to ONC can occur along their entire life cycle, namely, during synthesis, handling, use, manipulation, and disposal. Compared to other ENMs, however, little information exists describing which physicochemical properties contribute to induced health risk. This study conducted high content screening on bronchial epithelial cell monolayers for coupled high-throughput in vitro assessment strategies aimed to evaluate acute toxicity of a library of ONCs (all of prevalent use) prior to and after simulated disposal by incineration. Coating-, incineration status-, and time-dependent effects were considered to determine changes in the pulmonary monolayer integrity, cell transepithelial resistance, apoptosis, and cell metabolism. Results showed that after exposure to each ONC at its half-maximal inhibitory concentration (IC50) there is a material-induced toxicity effect with pristine nanoclay, for instance, displaying acute loss of monolayer coverage, resistance, and metabolism, coupled with increased number of apoptotic cells. Conversely, the other three ONCs tested displayed little loss of monolayer integrity; however, they exhibited differential coating-dependent increased apoptosis and up to 40-45% initial reduction in cell metabolism. Moreover, incinerated byproducts of ONCs exhibited significant loss of monolayer coverage and integrity, increased necrosis, with little evidence of monolayer re-establishment. These findings indicate that characteristics of organic coating type largely determine the mechanism of cytotoxicity and the ability of the monolayer to recover. Use of high content screening coupled with traditional in vitro assays proves to serve as a rapid pulmonary toxicity assessment tool to help define prevention by targeted physicochemical material properties design strategies.


Assuntos
Bentonita/toxicidade , Brônquios/efeitos dos fármacos , Argila/química , Células Epiteliais/efeitos dos fármacos , Nanocompostos/toxicidade , Apoptose/efeitos dos fármacos , Brônquios/citologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Necrose/induzido quimicamente
6.
Chem Res Toxicol ; 32(12): 2382-2397, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31657553

RESUMO

Iron oxide nanoparticles (IONP) have recently surged in production and use in a wide variety of biomedical and environmental applications. However, their potential long-term health effects, including carcinogenesis, are unknown. Limited research suggests IONP can induce genotoxicity and neoplastic transformation associated with particle dissolution and release of free iron ions. "Safe by design" strategies involve the modification of particle physicochemical properties to affect subsequent adverse outcomes, such as an amorphous silica coating to reduce IONP dissolution and direct interaction with cells. We hypothesized that long-term exposure to a specific IONP (nFe2O3) would induce neoplastic-like cell transformation, which could be prevented with an amorphous silica coating (SiO2-nFe2O3). To test this hypothesis, human bronchial epithelial cells (Beas-2B) were continuously exposed to a 0.6 µg/cm2 administered a dose of nFe2O3 (∼0.58 µg/cm2 delivered dose), SiO2-nFe2O3 (∼0.55 µg/cm2 delivered dose), or gas metal arc mild steel welding fumes (GMA-MS, ∼0.58 µg/cm2 delivered dose) for 6.5 months. GMA-MS are composed of roughly 80% iron/iron oxide and were recently classified as a total human carcinogen. Our results showed that low-dose/long-term in vitro exposure to nFe2O3 induced a time-dependent neoplastic-like cell transformation, as indicated by increased cell proliferation and attachment-independent colony formation, which closely matched that induced by GMA-MS. This transformation was associated with decreases in intracellular iron, minimal changes in reactive oxygen species (ROS) production, and the induction of double-stranded DNA damage. An amorphous silica-coated but otherwise identical particle (SiO2-nFe2O3) did not induce this neoplastic-like phenotype or changes in the parameters mentioned above. Overall, the presented data suggest the carcinogenic potential of long-term nFe2O3 exposure and the utility of an amorphous silica coating in a "safe by design" hazard reduction strategy, within the context of a physiologically relevant exposure scenario (low-dose/long-term), with model validation using GMA-MS.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Dióxido de Silício/química , Carcinógenos/química , Proliferação de Células/efeitos dos fármacos , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Compostos Férricos/química , Humanos , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo
7.
Part Fibre Toxicol ; 16(1): 36, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590690

RESUMO

BACKGROUND: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). RESULTS: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 µg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 µg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 µg/mL MWCNT-HT & ND. CONCLUSIONS: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.


Assuntos
Dano ao DNA , Células Epiteliais/efeitos dos fármacos , Temperatura Alta , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Nitrogênio/química , Ciclo Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/patologia , Humanos , Pulmão/patologia , Nanotubos de Carbono/química , Tamanho da Partícula , Propriedades de Superfície
8.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3406-3415, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27612663

RESUMO

BACKGROUND: Montmorillonite is a type of nanoclay that originates from the clay fraction of the soil and is incorporated into polymers to form nanocomposites with enhanced mechanical strength, barrier, and flammability properties used for food packaging, automotive, and medical devices. However, with implementation in such consumer applications, the interaction of montmorillonite-based composites or derived byproducts with biological systems needs to be investigated. METHODS: Herein we examined the potential of Cloisite Na+ (pristine) and Cloisite 30B (organically modified montmorillonite nanoclay) and their thermally degraded byproducts' to induce toxicity in model human lung epithelial cells. The experimental set-up mimicked biological exposure in manufacturing and disposal areas and employed cellular treatments with occupationally relevant doses of nanoclays previously characterized using spectroscopical and microscopical approaches. For nanoclay-cellular interactions and for cellular analyses respectively, biosensorial-based analytical platforms were used, with induced cellular changes being confirmed via live cell counts, viability assays, and cell imaging. RESULTS: Our analysis of byproducts' chemical and physical properties revealed both structural and functional changes. Real-time high throughput analyses of exposed cellular systems confirmed that nanoclay induced significant toxic effects, with Cloisite 30B showing time-dependent decreases in live cell count and cellular viability relative to control and pristine nanoclay, respectively. Byproducts produced less toxic effects; all treatments caused alterations in the cell morphology upon exposure. CONCLUSIONS: Our morphological, behavioral, and viability cellular changes show that nanoclays have the potential to produce toxic effects when used both in manufacturing or disposal environments. GENERAL SIGNIFICANCE: The reported toxicological mechanisms prove the extensibility of a biosensorial-based platform for cellular behavior analysis upon treatment with a variety of nanomaterials.


Assuntos
Silicatos de Alumínio/química , Microscopia de Fluorescência/métodos , Nanopartículas/química , Análise Espectral/métodos , Temperatura , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Argila , Sistemas Computacionais , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Umidade , Nanopartículas/ultraestrutura , Tamanho da Partícula , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Testes de Toxicidade , Volatilização
9.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L538-49, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27422997

RESUMO

Carbon nanotubes (CNTs) have been likened to asbestos in terms of morphology and toxicity. CNT exposure can lead to pulmonary fibrosis and promotion of tumorigenesis. However, the mechanisms underlying CNT-induced carcinogenesis are not well defined. Mesothelin (MSLN) is overexpressed in many human tumors, including mesotheliomas and pancreatic and ovarian carcinomas. In this study, the role of MSLN in the carcinogenic transformation of human bronchial epithelial cells chronically exposed to single-walled CNT (BSW) was investigated. MSLN overexpression was found in human lung tumors, lung cancer cell lines, and BSW cells. The functional role of MSLN in the BSW cells was then investigated by using stably transfected MSLN knockdown (BSW shMSLN) cells. MSLN knockdown resulted in significantly decreased invasion, migration, colonies on soft agar, and tumor sphere formation. In vivo, BSW shMSLN cells formed smaller primary tumors and less metastases. The mechanism by which MSLN contributes to these more aggressive behaviors was investigated by using ingenuity pathway analysis, which predicted that increased MSLN could induce cyclin E expression. We found that BSW shMSLN cells had decreased cyclin E, and their proliferation rate was reverted to nearly that of untransformed cells. Cell cycle analysis showed that the BSW shMSLN cells had an increased G2 population and a decreased S phase population, which is consistent with the decreased rate of proliferation. Together, our results indicate a novel role of MSLN in the malignant transformation of bronchial epithelial cells following CNT exposure, suggesting its utility as a potential biomarker and drug target for CNT-induced malignancies.


Assuntos
Carcinógenos/toxicidade , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/fisiologia , Neoplasias Pulmonares/metabolismo , Nanotubos de Carbono/toxicidade , Animais , Bronquíolos/patologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Ciclina E/genética , Ciclina E/metabolismo , Células Epiteliais/patologia , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Mesotelina , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias
10.
Part Fibre Toxicol ; 13(1): 23, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142434

RESUMO

BACKGROUND: Nano-scaled cerium oxide (nCeO2) is used in a variety of applications, including use as a fuel additive, catalyst, and polishing agent, yet potential adverse health effects associated with nCeO2 exposure remain incompletely understood. Given the increasing utility and demand for engineered nanomaterials (ENMs) such as nCeO2, "safety-by-design" approaches are currently being sought, meaning that the physicochemical properties (e.g., size and surface chemistry) of the ENMs are altered in an effort to maximize functionality while minimizing potential toxicity. In vivo studies have shown in a rat model that inhaled nCeO2 deposited deep in the lung and induced fibrosis. However, little is known about how the physicochemical properties of nCeO2, or the coating of the particles with a material such as amorphous silica (aSiO2), may affect the bio-activity of these particles. Thus, we hypothesized that the physicochemical properties of nCeO2 may explain its potential to induce fibrogenesis, and that a nano-thin aSiO2 coating on nCeO2 may counteract that effect. RESULTS: Primary normal human lung fibroblasts were treated at occupationally relevant doses with nCeO2 that was either left uncoated or was coated with aSiO2 (amsCeO2). Subsequently, fibroblasts were analyzed for known hallmarks of fibrogenesis, including cell proliferation and collagen production, as well as the formation of fibroblastic nodules. The results of this study are consistent with this hypothesis, as we found that nCeO2 directly induced significant production of collagen I and increased cell proliferation in vitro, while amsCeO2 did not. Furthermore, treatment of fibroblasts with nCeO2, but not amsCeO2, significantly induced the formation of fibroblastic nodules, a clear indicator of fibrogenicity. Such in vitro data is consistent with recent in vivo observations using the same nCeO2 nanoparticles and relevant doses. This effect appeared to be mediated through TGFß signaling since chemical inhibition of the TGFß receptor abolished these responses. CONCLUSIONS: These results indicate that differences in the physicochemical properties of nCeO2 may alter the fibrogenicity of this material, thus highlighting the potential benefits of "safety-by-design" strategies. In addition, this study provides an efficient in vitro method for testing the fibrogenicity of ENMs that strongly correlates with in vivo findings.


Assuntos
Poluentes Atmosféricos/toxicidade , Cério/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/toxicidade , Poluentes Atmosféricos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cério/química , Fenômenos Químicos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Nanopartículas Metálicas/química , Tamanho da Partícula , Fenômenos Físicos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química , Propriedades de Superfície , Testes de Toxicidade Aguda , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 309(8): L821-33, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472812

RESUMO

Carbon nanotubes (CNTs) induce rapid interstitial lung fibrosis, but the underlying mechanisms are unclear. Previous studies indicated that the ability of CNTs to penetrate lung epithelium, enter interstitial tissue, and stimulate fibroblasts to produce collagen matrix is important to lung fibrosis. In this study, we investigated the activation of transforming growth factor-ß receptor-1 [TGF-ß R1; i.e., activin receptor-like kinase 5 (ALK5) receptor] and TGF-ß/Smad signaling pathway in CNT-induced collagen production in human lung fibroblasts. Human lung fibroblasts and epithelial cells were exposed to low, physiologically relevant concentrations (0.02-0.6 µg/cm(2)) of single-walled CNTs (SWCNT) and multiwalled CNTs (MWCNT) in culture and analyzed for collagen, TGF-ß1, TGF-ß R1, and SMAD proteins by Western blotting and immunofluorescence. Chemical inhibition of ALK5 and short-hairpin (sh) RNA targeting of TGF-ß R1 and Smad2 were used to probe the fibrogenic mechanism of CNTs. Both SWCNT and MWCNT induced an overexpression of TGF-ß1, TGF-ß R1 and Smad2/3 proteins in lung fibroblasts compared with vehicle or ultrafine carbon black-exposed controls. SWCNT- and MWCNT-induced collagen production was blocked by ALK5 inhibitor or shRNA knockdown of TGF-ß R1 and Smad2. Our results indicate the critical role of TGF-ß R1/Smad2/3 signaling in CNT-induced fibrogenesis by upregulating collagen production in lung fibroblasts. This novel finding may aid in the design of mechanism-based risk assessment and development of rapid screening tests for nanomaterial fibrogenicity.


Assuntos
Nanotubos de Carbono/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Linhagem Celular , Colágeno Tipo I/biossíntese , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Pulmão/metabolismo , Camundongos , Nanotubos de Carbono/ultraestrutura , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Mucosa Respiratória/metabolismo , Fatores de Risco , Transdução de Sinais , Proteína Smad2/antagonistas & inibidores , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Int J Mol Sci ; 15(5): 7444-61, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24786100

RESUMO

Given their extremely small size and light weight, carbon nanotubes (CNTs) can be readily inhaled by human lungs resulting in increased rates of pulmonary disorders, particularly fibrosis. Although the fibrogenic potential of CNTs is well established, there is a lack of consensus regarding the contribution of physicochemical attributes of CNTs on the underlying fibrotic outcome. We designed an experimentally validated in vitro fibroblast culture model aimed at investigating the effect of fiber length on single-walled CNT (SWCNT)-induced pulmonary fibrosis. The fibrogenic response to short and long SWCNTs was assessed via oxidative stress generation, collagen expression and transforming growth factor-beta (TGF-ß) production as potential fibrosis biomarkers. Long SWCNTs were significantly more potent than short SWCNTs in terms of reactive oxygen species (ROS) response, collagen production and TGF-ß release. Furthermore, our finding on the length-dependent in vitro fibrogenic response was validated by the in vivo lung fibrosis outcome, thus supporting the predictive value of the in vitro model. Our results also demonstrated the key role of ROS in SWCNT-induced collagen expression and TGF-ß activation, indicating the potential mechanisms of length-dependent SWCNT-induced fibrosis. Together, our study provides new evidence for the role of fiber length in SWCNT-induced lung fibrosis and offers a rapid cell-based assay for fibrogenicity testing of nanomaterials with the ability to predict pulmonary fibrogenic response in vivo.


Assuntos
Fibroblastos/patologia , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Fibrose Pulmonar/induzido quimicamente , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Citotoxinas/química , Citotoxinas/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Sci Rep ; 13(1): 8220, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217524

RESUMO

Tetrazolium reduction and resazurin assays are the mainstay of routine in vitro toxicity batteries. However, potentially erroneous characterization of cytotoxicity and cell proliferation can arise if verification of baseline interaction of test article with method employed is neglected. The current investigation aimed to demonstrate how interpretation of results from several standard cytotoxicity and proliferation assays vary in dependence on contributions from the pentose phosphate pathway (PPP). Non-tumorigenic Beas-2B cells were treated with graded concentrations of benzo[a]pyrene (B[a]P) for 24 and 48 h prior to cytotoxicity and proliferation assessment with commonly used MTT, MTS, WST1, and Alamar Blue assays. B[a]P caused enhanced metabolism of each dye assessed despite reductions in mitochondrial membrane potential and was reversed by 6-aminonicotinamide (6AN)-a glucose-6-phosphate dehydrogenase inhibitor. These results demonstrate differential sensitivity of standard cytotoxicity assessments on the PPP, thus (1) decoupling "mitochondrial activity" as an interpretation of cellular formazan and Alamar Blue metabolism, and (2) demonstrating the implicit requirement for investigators to sufficiently verify interaction of these methods in routine cytotoxicity and proliferation characterization. The nuances of method-specific extramitochondrial metabolism must be scrutinized to properly qualify specific endpoints employed, particularly under the circumstances of metabolic reprogramming.


Assuntos
6-Aminonicotinamida , Via de Pentose Fosfato
14.
Toxicol Appl Pharmacol ; 261(2): 204-16, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521957

RESUMO

Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A 'pro-cancer' gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment.


Assuntos
Transformação Celular Neoplásica , Redes Reguladoras de Genes/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Óxidos/toxicidade , Animais , Trióxido de Arsênio , Arsenicais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais , Feminino , Humanos , Pulmão , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , PPAR alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Toxicol Appl Pharmacol ; 258(1): 51-60, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22037315

RESUMO

Mechanisms of digitoxin-inhibited cell growth and induced apoptosis in human non-small cell lung cancer (NCI-H460) cells remain unclear. Understanding how digitoxin or derivate analogs induce their cytotoxic effect below therapeutically relevant concentrations will help in designing and developing novel, safer and more effective anti-cancer drugs. In this study, NCI-H460 cells were treated with digitoxin and a synthetic analog D6-MA to determine their anti-cancer activity. Different concentrations of digitoxin and D6-MA were used and the subsequent changes in cell morphology, viability, cell cycle, and protein expressions were determined. Digitoxin and D6-MA induced dose-dependent apoptotic morphologic changes in NCI-H460 cells via caspase-9 cleavage, with D6-MA possessing 5-fold greater potency than digitoxin. In comparison, non-tumorigenic immortalized bronchial and small airway epithelial cells displayed significantly less apoptotic sensitivity compared to NCI-H460 cells suggesting that both digitoxin and D6-MA were selective for NSCLC. Furthermore, NCI-H460 cells arrested in G(2)/M phase following digitoxin and D6-MA treatment. Post-treatment evaluation of key G2/M checkpoint regulatory proteins identified down-regulation of cyclin B1/cdc2 complex and survivin. Additionally, Chk1/2 and p53 related proteins experienced down-regulation suggesting a p53-independent cell cycle arrest mechanism. In summary, digitoxin and D6-MA exert anti-cancer effects on NCI-H460 cells through apoptosis or cell cycle arrest, with D6-MA showing at least 5-fold greater potency relative to digitoxin.


Assuntos
Antineoplásicos/farmacologia , Digitoxina/análogos & derivados , Digitoxina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Ramnose/análogos & derivados , Caspase 9/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Ciclina B1/análise , Citocromos c/análise , Humanos , Neoplasias Pulmonares/patologia , Proteínas Quinases/análise , Ramnose/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
16.
Biochim Biophys Acta Gen Subj ; 1864(11): 129683, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32679249

RESUMO

BACKGROUND: Cardiac glycosides (CGs), such as digitoxin, are traditionally used for treatment of congestive heart failure; recently they also gained attention for their anticancer properties. Previous studies showed that digitoxin and a synthetic L-sugar monosaccharide analog treatment decreases cancer cell proliferation, increases apoptosis, and pro-adhesion abilities; however, no reports are available on their potential to alter lung cancer cell cytoskeleton structure and reduce migratory ability. Herein, we investigated the anticancer effects of digitoxin and its analog, digitoxigenin-α-L-rhamnoside (D6MA), to establish whether cytoskeleton reorganization and reduced motility are drug-induced cellular outcomes. METHODS: We treated non-small cell lung carcinoma cells (NSCLCs) with sub-therapeutic, therapeutic, and toxic concentrations of digitoxin and D6MA respectively, followed by both single point and real-time assays to evaluate changes in cellular gene and protein expression, adhesion, elasticity, and migration. RESULTS: Digitoxin and D6MA induced a decrease in matrix metalloproteinases expression via altered focal adhesion signaling and a suppression of the phosphoinositide 3-kinases / protein kinase B pathway which lead to enhanced adhesion, altered elasticity, and reduced motility of NSCLCs. Global gene expression analysis identified dose-dependent changes to nuclear factor kappa-light-chain-enhancer, epithelial tumor, and microtubule dynamics signaling. CONCLUSIONS: Our study demonstrates that digitoxin and D6MA can target antitumor signaling pathways to alter NSCLC cytoskeleton and migratory ability to thus potentially reduce their tumorigenicity. SIGNIFICANCE: Discovering signaling pathways that control cancer's cell phenotype and how such pathways are affected by CG treatment will potentially allow for active usage of synthetic CG analogs as therapeutic agents in advanced lung conditions.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Digitoxina/análogos & derivados , Digitoxina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/patologia , Humanos , Neoplasias Pulmonares/patologia
17.
Environ Sci Nano ; 7: 1539-1553, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37205161

RESUMO

Manufacturing, processing, use, and disposal of nanoclay-enabled composites potentially lead to the release of nanoclay particles from the polymer matrix in which they are embedded; however, exposures to airborne particles are poorly understood. The present study was conducted to characterize airborne particles released during sanding of nanoclay-enabled thermoplastic composites. Two types of nanoclay, Cloisite® 25A and Cloisite® 93A, were dispersed in polypropylene at 0%, 1%, and 4% loading by weight. Zirconium aluminum oxide (P100/P180 grits) and silicon carbide (P120/P320 grits) sandpapers were used to abrade composites in controlled experiments followed by real-time and offline particle analyses. Overall, sanding the virgin polypropylene with zirconium aluminum oxide sandpaper released more particles compared to silicon carbide sandpaper, with the later exhibiting similar or lower concentrations than that of polypropylene. Thus, a further investigation was performed for the samples collected using the zirconium aluminum oxide sandpaper. The 1% 25A, 1% 93A, and 4% 93A composites generated substantially higher particle number concentrations (1.3-2.6 times) and respirable mass concentrations (1.2-2.3 times) relative to the virgin polypropylene, while the 4% 25A composite produced comparable results, regardless of sandpaper type. It was observed that the majority of the inhalable particles were originated from composite materials with a significant number of protrusions of nanoclay (18-59%). These findings indicate that the percent loading and dispersion of nanoclay in the polypropylene modified the mechanical properties and thus, along with sandpaper type, affected the number of particles released during sanding, implicating the cause of potential adverse health effects.

18.
Environ Toxicol Chem ; 28(11): 2348-59, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19606911

RESUMO

Exposure to multiple stressors from natural and anthropogenic sources poses risk to sensitive crustacean growth and developmental processes. Applications of synthetic pyrethroids and insect growth regulators near shallow coastal waters may result in harmful mixture effects depending on the salinity regime. The potential for nonadditive effects of a permethrin (0.01 2 gg/L), methoprene (0.03-10 tg/L ), and salinity (10-40 ppt) exposure on male and female Uca pugnax limb regeneration and molting processes was evaluated by employing a central composite rotatable design with multifactorial regression. Crabs underwent single-limb autotomy followed by a molting challenge under I of 16 different mixture treatments. During the exposure (21-66 d), individual limb growth, major molt stage duration, abnormal limb regeneration, and respiration were monitored. At 6 d postmolt, changes in body mass, carapace width, and body condition factor were evaluated. Dorsal carapace tissue was collected, and protein and chitin were extracted to determine the composition of newly synthesized exoskeleton. The present results suggest chronic, low-dose exposures to multiple pesticide stressors cause less-than-additive effects on U. pugnax growth processes. Under increasing concentrations of methoprene and permethrin, males had more protein in their exoskeletons and less gain in body mass, carapace width, and body condition compared to females. Females exhibited less gain in carapace width than controls in response to methoprene and permethrin. Females also displayed elevated respiration rates at all stages of molt, suggesting a high metabolic rate. Divergent growth and fitness between the sexes over the long term could influence crustacean population resilience.


Assuntos
Braquiúros/efeitos dos fármacos , Extremidades/fisiologia , Inseticidas/toxicidade , Metoprene/toxicidade , Permetrina/toxicidade , Animais , Braquiúros/metabolismo , Quitina/análise , Quitina/metabolismo , Exposição Ambiental , Estudos de Avaliação como Assunto , Feminino , Modelos Lineares , Masculino , Muda/efeitos dos fármacos , Análise Multivariada , Proteínas/análise , Proteínas/metabolismo , Regeneração/efeitos dos fármacos , Salinidade , Fatores Sexuais
19.
Environ Sci Nano ; 6(7): 2152-2170, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31372228

RESUMO

Cancer stem cells (CSCs) are a key driver of tumor formation and metastasis, but how they are affected by nanomaterials is largely unknown. The present study investigated the effects of different carbon-based nanomaterials (CNMs) on neoplastic and CSC-like transformation of human small airway epithelial cells and determined the underlying mechanisms. Using a physiologically relevant exposure model (long-term/low-dose) with system validation using a human carcinogen, asbestos, we demonstrated that single-walled carbon nanotubes, multi-walled carbon nanotubes, ultrafine carbon black, and crocidolite asbestos induced particle-specific anchorage-independent colony formation, DNA-strand break, and p53 downregulation, indicating genotoxicity and carcinogenic potential of CNMs. The chronic CNM-exposed cells exhibited CSC-like properties as indicated by 3D spheroid formation, anoikis resistance, and CSC markers expression. Mechanistic studies revealed specific self-renewal and epithelial-mesenchymal transition (EMT)-related transcription factors that are involved in the cellular transformation process. Pathway analysis of gene signaling networks supports the role of SOX2 and SNAI1 signaling in CNM-mediated transformation. These findings support the potential carcinogenicity of high aspect ratio CNMs and identified molecular targets and signaling pathways that may contribute to the disease development.

20.
Toxicol Lett ; 317: 1-12, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562913

RESUMO

During extrusion of some polymers, fused filament fabrication (FFF) 3-D printers emit billions of particles per minute and numerous organic compounds. The scope of this study was to evaluate FFF 3-D printer emission-induced toxicity in human small airway epithelial cells (SAEC). Emissions were generated from a commercially available 3-D printer inside a chamber, while operating for 1.5 h with acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) filaments, and collected in cell culture medium. Characterization of the culture medium revealed that repeat print runs with an identical filament yield various amounts of particles and organic compounds. Mean particle sizes in cell culture medium were 201 ±â€¯18 nm and 202 ±â€¯8 nm for PC and ABS, respectively. At 24 h post-exposure, both PC and ABS emissions induced a dose dependent significant cytotoxicity, oxidative stress, apoptosis, necrosis, and production of pro-inflammatory cytokines and chemokines in SAEC. Though the emissions may not completely represent all possible exposure scenarios, this study indicate that the FFF could induce toxicological effects. Further studies are needed to quantify the detected chemicals in the emissions and their corresponding toxicological effects.


Assuntos
Resinas Acrílicas/toxicidade , Butadienos/toxicidade , Células Epiteliais/efeitos dos fármacos , Nanopartículas/toxicidade , Cimento de Policarboxilato/toxicidade , Poliestirenos/toxicidade , Impressão Tridimensional , Mucosa Respiratória/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Mediadores da Inflamação/metabolismo , Necrose , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Mucosa Respiratória/metabolismo , Mucosa Respiratória/ultraestrutura , Medição de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa