Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 428: 128256, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038666

RESUMO

The suitability of the AhR reporter gene bioassays to screen the presence of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in sewage sludge (SL) and related hydrochar (HC) was here investigated. Samples of SL obtained from six WWTPs were processed by hydrothermal carbonization to obtain the resultant HCs and both tested with DR-CALUX® bioassay. Levels of PCDD/Fs and dl-PCBs were also determined analytically in the same samples by GC-MS/MS. Bioanalytical Toxicity Equivalent values (BEQ) resulted in one order of magnitude higher in HC compared to SL samples and those obtained from the dl-PCBs fraction higher than those from PCDD/Fs. BEQ and TEQWHO values, the latter obtained by GC-MS/MS analysis on the same matrices, were highly correlated showing also a similar trend in the six WWTPs (RS= 0.8252, p < 0.001; Pearson's R RP =0.8029, p < 0.01). The suitability of AhR bioassays and in particular of the DR-CALUX® to screen the presence and biological activity of legacy organohalogen compounds in both SL and HC matrices was demonstrated for the first time which support their usage for the assessment of potential risks associated with their further environmental applications.


Assuntos
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Bioensaio , Dibenzofuranos , Dibenzofuranos Policlorados , Dioxinas/toxicidade , Furanos , Genes Reporter , Bifenilos Policlorados/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Esgotos , Espectrometria de Massas em Tandem
2.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34443734

RESUMO

Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs' massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.

3.
Chemosphere ; 279: 130576, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894519

RESUMO

The aim of the present study was to assess the occurrence and spatial distribution of PCDD/Fs and dioxin-like compounds in topsoils of Taranto (Apulia Region), one of the most heavily industrialized and contaminated area of Southern Italy. A combined approach of chemical analysis by GC-MS/MS and AhR reporter gene bioassay was applied in a subset of topsoil samples (n = 20) collected in 2017-18 from ten sites embracing three levels of risk (from high to low) in the framework of a large survey inside Taranto municipality. TCDD-BEQs and GC-MS/MS TEQWHO and TEQTHEORETICAL revealed a decreasing trend with the distance from main industrial settings and landfill areas. A strong correlation between TCDD-BEQs and TEQWHO values (R2 = 0.85) and TEQTHEORETICAL (R2 = 0.88) was also found. In 3 out of 10 topsoil investigated, BEQs and TEQWHO/THEORETICAL resulted above Italian National Regulatory Limits for ∑PCDD/Fs in green, private and recreational used soils (10 ng TEQ/kg d.w. D.Lgs 152/2006) and for ∑PCDD/F/dl-PCBs in agricultural and farming soil (6 ng TEQ/kg d.w. D.M. 46/2019). GC-MS/MS pattern revealed the highest prevalence of dl-PCBs in 6 out of 10 sites, followed by PCDFs and PCDDs. Those sites are all located in proximity of main industrial steel and iron ore sinter plant, steel plant's landfills and illegal dumping sites. An update on occurrence and spatial distribution of PCDD/Fs and dl-PCBs contamination of Taranto urban soils was obtained and the DR-CALUX® bioassay was further recommended as a suitable screening tool for environmental and human risk assessment.


Assuntos
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Bioensaio , Dibenzofuranos , Dioxinas/análise , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Itália , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Solo , Espectrometria de Massas em Tandem
4.
Toxics ; 10(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35051051

RESUMO

A topsoil sample obtained from a highly industrialized area (Taranto, Italy) was tested on the DR-CALUX® cell line and the exposed cells processed with proteomic and bioinformatics analyses. The presence of polyhalogenated compounds in the topsoil extracts was confirmed by GC-MS/MS analysis. Proteomic analysis of the cells exposed to the topsoil extracts identified 43 differential proteins. Enrichment analysis highlighted biological processes, such as the cellular response to a chemical stimulus, stress, and inorganic substances; regulation of translation; regulation of apoptotic process; and the response to organonitrogen compounds in light of particular drugs and compounds, extrapolated by bioinformatics all linked to the identified protein modifications. Our results confirm and reflect the complex epidemiological situation occurring among Taranto inhabitants and underline the need to further investigate the presence and sources of inferred chemicals in soils. The combination of bioassays and proteomics reveals a more complex scenario of chemicals able to affect cellular pathways and leading to toxicities rather than those identified by only bioassays and related chemical analysis. This combined approach turns out to be a promising tool for soil risk assessment and deserves further investigation and developments for soil monitoring and risk assessment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa