Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 145(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416287

RESUMO

Biphasic poro-viscoelastic constitutive material model (BPVE) captures both the fluid flow dependent and independent behavior of cartilage under stress relaxation type indentation. A finite element model based on BPVE formulation was developed to explore the sensitivity of the model to Young's modulus, Poisson's ratio, permeability, and viscoelastic constitutive parameters expressed in terms of Prony series coefficients. Then we fit the numerical model to experimental force versus time curves from stress relaxation indents on bovine tibial plateaus to extract the material properties. Measurements were made over the period of two days to capture the material property changes that resulted from trypsin-induced degradation. We measured spatial and temporal changes in mechanical properties in the cartilage. The areas of degradation were characterized by an increase in both permeability and summation of Prony series shear relaxation amplitude constants. These findings suggest that cartilage degradation reduces the intrinsic viscoelastic properties of the solid phase of the tissue in addition to impairing its capacity to offer frictional drag to the interstitial fluid flow (permeability). The changes in material properties are measurable well before structural degradation occurs.


Assuntos
Cartilagem Articular , Animais , Bovinos
2.
J Res Natl Inst Stand Technol ; 126: 126020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38469452

RESUMO

Ultraviolet-C (UV-C) decontamination holds promise in combating the coronavirus disease 2019 pandemic, particularly with its potential to mitigate the N95 respirator shortage. Safe, effective, and reproducible decontamination depends critically on UV-C dose, yet dose is frequently measured and reported incorrectly, which results in misleading and potentially harmful protocols. Understanding best practices in UV-C dose measurement for N95 respirator decontamination is essential to the safety of medical professionals, researchers, and the public. Here, we outline the fundamental optical principles governing UV-C irradiation and detection, as well as the key metrics of UV-C wavelength and dose. In particular, we discuss the technical and regulatory distinctions between UV-C N95 respirator decontamination and other applications of germicidal UV-C, and we highlight the unique considerations required for UV-C N95 respirator decontamination. Together, this discussion will inform best practices for UV-C dose measurement for N95 respirator decontamination during crisis-capacity conditions.

3.
Anal Chem ; 92(1): 875-883, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31756067

RESUMO

Thermodynamic partitioning dictates solute loading and release from a hydrogel. Design of drug delivery vehicles, cell and tissue matrices, and immunoassay scaffolds that utilize hydrogel materials is informed by an understanding of the thermodynamic partitioning properties of those hydrogels. We develop aberration-compensated laser scanning confocal microscopy (AC-LSCM), a technique that can be applied to all fluorescence microscopy-based equilibrium partition coefficient measurements where the fluorescence is uniformly distributed in the reference material (e.g., many solutes in thermodynamic equilibrium). In this paper, we use AC-LSCM to measure spatially resolved in situ equilibrium partition coefficients of various fluorescently labeled solutes in single-layer and multilayer open hydrogels. In considering a dynamic material, we scrutinize solute interactions with a UV photoactive polyacrylamide gel that incorporates a benzophenone methacrylamide backbone. We observed strong agreement with an adjusted version of Ogston's ideal size-exclusion model for spatially resolved in situ equilibrium partition coefficients across a wide range of polyacrylamide hydrogel densities (R2 = 0.98). Partition coefficients of solutes differing in hydrodynamic radius were consistent with size-based theory in the photoactive hydrogels, but exceed those in unmodified polyacrylamide gels. This observation suggests a deviation from the size-exclusion model and a shift in the thermodynamic equilibrium state of the solutes toward the gel phase. AC-LSCM also resolves differential partitioning behavior of the model solute in two-layer gels, providing insight into the transport phenomena governing the partitioning in multilaminate gel structures. Furthermore, AC-LSCM identifies and quantifies depth-dependent axial aberrations that could confound quantitation, highlighting the need for the "aberration compensated" aspect of AC-LSCM.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Acrilamidas/química , Benzofenonas/química , Difusão , Sistemas de Liberação de Medicamentos , Hidrodinâmica , Microscopia Confocal , Porosidade , Termodinâmica , Raios Ultravioleta
4.
Anal Chem ; 92(4): 3180-3188, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31985208

RESUMO

Immunoprobed isoelectric focusing (IEF) resolves proteins based on differences in isoelectric point (pI) and then identifies protein targets through immunoprobing of IEF-separated proteins that have been immobilized onto a gel scaffold. During the IEF stage, the gel functions as an anti-convective medium and not as a molecular sieving matrix. During the immunoprobing stage, the gel acts as an immobilization scaffold for IEF-focused proteins via photoactive moieties. Here, we characterized the effect of gel pore size on IEF separation and in-gel immunoassay performance. We modulated polyacrylamide (PA) gel pore size via lateral chain aggregation initiated by PEG monomers. During IEF, the 2% PEG highly porous PA gel formulation offered higher resolution (minimum pI difference ∼0.07 ± 0.02) than unmodified 6%T, 3.3%C (benchmark) and 6%T, 8%C (negative control) PA gels. The highly porous gels supported a pH gradient with slope and linearity comparable to benchmark gels. The partition coefficient for antibodies into the highly porous gels (K = 0.35 ± 0.02) was greater than the benchmark (3×) and negative control (1.75×) gels. The highly porous gels also had lower immunoassay background signal than the benchmark (2×) and negative control (3×) gels. Taken together, lateral aggregation creates PA gels that are suitable for both IEF and subsequent in-gel immunoprobing by mitigating immunoprobe exclusion from the gels while facilitating removal of unbound immunoprobe.


Assuntos
Resinas Acrílicas/química , Focalização Isoelétrica/métodos , Géis , Porosidade , Termodinâmica
5.
J Biol Chem ; 288(5): 3036-47, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23250756

RESUMO

Differentiation of adipocytes from preadipocytes contributes to adipose tissue expansion in obesity. Impaired adipogenesis may underlie the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mechanistically, a well defined transcriptional network coordinates adipocyte differentiation. The family of paired-related homeobox transcription factors, which includes Prrx1a, Prrx1b, and Prrx2, is implicated with regulation of mesenchymal cell fate, including myogenesis and skeletogenesis; however, whether these proteins impact adipogenesis remains to be addressed. In this study, we identify Prrx1a and Prrx1b as negative regulators of adipogenesis. We show that Prrx1a and Prrx1b are down-regulated during adipogenesis in vitro and in vivo. Stable knockdown of Prrx1a/b enhances adipogenesis, with increased expression of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α and FABP4 and increased secretion of the adipokines adiponectin and chemerin. Although stable low-level expression of Prrx1a, Prrx1b, or Prrx2 does not affect 3T3-L1 adipogenesis, transient overexpression of Prrx1a or Prrx1b inhibits peroxisome proliferator-activated receptor-γ activity. Prrx1 knockdown decreases expression of Tgfb2 and Tgfb3, and inhibition of TGFß signaling during adipogenesis mimics the effects of Prrx1 knockdown. These data support the hypothesis that endogenous Prrx1 restrains adipogenesis by regulating expression of TGFß ligands and thereby activating TGFß signaling. Finally, we find that expression of Prrx1a or Prrx1b in adipose tissue increases during obesity and strongly correlates with Tgfb3 expression in BL6 mice. These observations suggest that increased Prrx1 expression may promote TGFß activity in adipose tissue and thereby contribute to aberrant adipocyte function during obesity.


Assuntos
Adipogenia , Proteínas de Homeodomínio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , PPAR gama/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta3/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína Wnt3A/metabolismo
6.
Photochem Photobiol ; 98(4): 864-873, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34596899

RESUMO

Effective ultraviolet-C (UV-C) decontamination protocols of N95 respirators require validation that the entire N95 surface receives sufficient dose. Photochromic indicators (PCIs) can accurately measure UV-C dose on nonplanar surfaces, but often saturate below doses required to decontaminate porous, multilayered textiles like N95s. Here, we investigate the use of optical attenuators to extend PCI dynamic range while maintaining a near-ideal angular response-critical for accurate measurements of uncollimated UV-C. We show analytically that tuning attenuator refractive index, attenuation coefficient, and thickness can extend dynamic range, but compromises angular response unless the attenuator is an ideal diffuser. To investigate this tradeoff empirically, we stack PCIs behind model specular (floated borosilicate) and diffuse (polytetrafluoroethylene) attenuators, characterize the angular response, and evaluate on-N95 UV-C measurement accuracy within a decontamination system. Both attenuators increase PCI dynamic range >4×, but simultaneously introduce angle-dependent transmittance, which causes location-dependent underestimation of UV-C dose. PCI-borosilicate and PCI-polytetrafluoroethylene stacks underreport true on-N95 dose by (1) 14.7% and 3.6%, respectively, when near-normal to the source lamp array, and (2) 40.8% and 19.8%, respectively, in a steeply sloped location. Overall, we demonstrate that while planar attenuators can increase PCI dynamic range, verifying near-ideal angular response is critical for accurate UV-C measurements.


Assuntos
Descontaminação , Intervenção Coronária Percutânea , Descontaminação/métodos , Politetrafluoretileno , Dosímetros de Radiação
7.
Appl Biosaf ; 26(2): 90-102, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36034687

RESUMO

Introduction: The COVID-19 pandemic has led to critical shortages of single-use N95 filtering facepiece respirators. The US Centers for Disease Control and Prevention has identified ultraviolet-C (UV-C) irradiation as one of the most promising decontamination methods during crisis-capacity surges; however, understanding the mechanism of pathogen inactivation and post-treatment respirator performance is central to effective UV-C decontamination. Objective: We summarize the UV-C N95 decontamination evidence and identify key metrics. Methods: We evaluate the peer-reviewed literature on UV-C decontamination to inactivate SARS-CoV-2, viral analogues, and other microorganisms inoculated on N95s, as well as the resulting effect on respirator fit and filtration. Where peer-reviewed studies are absent, we discuss outstanding questions and ongoing work. Key Findings: Evidence supports that UV-C exposure of ≥1.0 J/cm2 inactivates SARS-CoV-2 analogues (≥3-log reduction) on the majority of tested N95 models. The literature cautions that (1) viral inactivation is N95 model-dependent and impeded by shadowing, (2) N95 straps require secondary decontamination, (3) higher doses may be necessary to inactivate other pathogens (e.g., some bacterial spores), and (4) while N95 fit and filtration appear to be preserved for 10-20 cycles of 1.0 J/cm2, donning and doffing may degrade fit to unacceptable levels within fewer cycles. Results and Discussion: Effective N95 UV-C treatment for emergency reuse requires both (1) inactivation of the SARS-CoV-2 virus, achieved through application of UV-C irradiation at an appropriate wavelength and effective dose, and (2) maintenance of the fit and filtration efficiency of the N95. Conclusions: UV-C treatment is a risk-mitigation process that should be implemented only under crisis-capacity conditions and with proper engineering, industrial hygiene, and biosafety controls.

8.
PLoS One ; 16(1): e0243554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33406084

RESUMO

With COVID-19 N95 shortages, frontline medical personnel are forced to reuse this disposable-but sophisticated-multilayer respirator. Widely used to decontaminate nonporous surfaces, UV-C light has demonstrated germicidal efficacy on porous, non-planar N95 respirators when all surfaces receive ≥1.0 J/cm2 dose. Of utmost importance across disciplines, translation of empirical evidence to implementation relies upon UV-C measurements frequently confounded by radiometer complexities. To enable rigorous on-respirator measurements, we introduce a photochromic indicator dose quantification technique for: (1) UV-C treatment design and (2) in-process UV-C dose validation. While addressing outstanding indicator limitations of qualitative readout and insufficient dynamic range, our methodology establishes that color-changing dosimetry can achieve the necessary accuracy (>90%), uncertainty (<10%), and UV-C specificity (>95%) required for UV-C dose measurements. In a measurement infeasible with radiometers, we observe a striking ~20× dose variation over N95s within one decontamination system. Furthermore, we adapt consumer electronics for accessible quantitative readout and use optical attenuators to extend indicator dynamic range >10× to quantify doses relevant for N95 decontamination. By transforming photochromic indicators into quantitative dosimeters, we illuminate critical considerations for both photochromic indicators themselves and UV-C decontamination processes.


Assuntos
Descontaminação/métodos , Respiradores N95/microbiologia , Dispositivos de Proteção Respiratória/microbiologia , COVID-19/prevenção & controle , Relação Dose-Resposta à Radiação , Contaminação de Equipamentos/prevenção & controle , Contaminação de Equipamentos/estatística & dados numéricos , Reutilização de Equipamento/estatística & dados numéricos , Humanos , Indicadores e Reagentes/efeitos da radiação , Radiometria/métodos , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade , Raios Ultravioleta , Ventiladores Mecânicos/microbiologia
9.
Sci Rep ; 11(1): 20341, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645859

RESUMO

During public health crises like the COVID-19 pandemic, ultraviolet-C (UV-C) decontamination of N95 respirators for emergency reuse has been implemented to mitigate shortages. Pathogen photoinactivation efficacy depends critically on UV-C dose, which is distance- and angle-dependent and thus varies substantially across N95 surfaces within a decontamination system. Due to nonuniform and system-dependent UV-C dose distributions, characterizing UV-C dose and resulting pathogen inactivation with sufficient spatial resolution on-N95 is key to designing and validating UV-C decontamination protocols. However, robust quantification of UV-C dose across N95 facepieces presents challenges, as few UV-C measurement tools have sufficient (1) small, flexible form factor, and (2) angular response. To address this gap, we combine optical modeling and quantitative photochromic indicator (PCI) dosimetry with viral inactivation assays to generate high-resolution maps of "on-N95" UV-C dose and concomitant SARS-CoV-2 viral inactivation across N95 facepieces within a commercial decontamination chamber. Using modeling to rapidly identify on-N95 locations of interest, in-situ measurements report a 17.4 ± 5.0-fold dose difference across N95 facepieces in the chamber, yielding 2.9 ± 0.2-log variation in SARS-CoV-2 inactivation. UV-C dose at several on-N95 locations was lower than the lowest-dose locations on the chamber floor, highlighting the importance of on-N95 dose validation. Overall, we integrate optical simulation with in-situ PCI dosimetry to relate UV-C dose and viral inactivation at specific on-N95 locations, establishing a versatile approach to characterize UV-C photoinactivation of pathogens contaminating complex substrates such as N95s.


Assuntos
Descontaminação/métodos , Respiradores N95/estatística & dados numéricos , SARS-CoV-2/efeitos da radiação , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/transmissão , Relação Dose-Resposta à Radiação , Reutilização de Equipamento , Humanos , Máscaras , Respiradores N95/virologia , Pandemias , Radiometria/métodos , SARS-CoV-2/patogenicidade , Raios Ultravioleta , Inativação de Vírus
10.
medRxiv ; 2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32743615

RESUMO

With COVID-19 N95 respirator shortages, frontline medical personnel are forced to reuse this disposable - but sophisticated - multilayer textile respirator. Widely used for decontamination of nonporous surfaces, UV-C light has germicidal efficacy on porous, non-planar N95 respirators when ≥1.0 J/cm^2 dose is applied across all surfaces. Here, we address outstanding limitations of photochromic indicators (qualitative readout and insufficient dynamic range) and introduce a photochromic UV-C dose quantification technique for: (1) design of UV-C treatments and (2) in-process UV-C dose validation. Our methodology establishes that color-changing dosimetry can achieve the necessary accuracy (>90%), uncertainty (<10%), and UV-C specificity (>95%). Furthermore, we adapt consumer electronics for accessible quantitative readout and extend the dynamic range >10× using optical attenuators. In a measurement infeasible with radiometers, we observe striking 20× dose variation over 3D N95 facepieces. By transforming photochromic indicators into quantitative dosimeters, we illuminate critical design considerations for both photochromic indicators and UV-C decontamination.

11.
Mater Sci Eng C Mater Biol Appl ; 33(7): 4453-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23910365

RESUMO

SU-8 negative photoresist is a high tensile strength polymer that has been used for a number of biomedical applications that include cell encapsulation and neuronal probes. Chemically, SU-8 comprises, among other components, an epoxy based monomer and antimony salts, the latter being a potential source of cytotoxicity. We report on the in vitro and in vivo evaluation of SU-8 biocompatibility based on leachates from various solvents, at varying temperatures and pH, and upon subcutaneous implantation of SU-8 substrates in mice. MTT cell viability assay did not exhibit any cytotoxic effects from the leachates. The hemolytic activity of SU-8 is comparable to that of FDA approved implant materials such as silicone elastomer, Buna-S and medical steel. In vivo histocompatibility study in mice indicates a muted immune response to subcutaneous SU-8 implants.


Assuntos
Materiais Biocompatíveis/farmacologia , Compostos de Epóxi/farmacologia , Teste de Materiais , Polímeros/farmacologia , Ágar , Animais , Antimônio/análise , Sobrevivência Celular/efeitos dos fármacos , Compostos de Epóxi/química , Hemólise/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Implantes Experimentais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos/efeitos dos fármacos , Polímeros/química , Implantação de Prótese , Ratos , Espectrofotometria Atômica , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa