Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 18(4): 343-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22486847

RESUMO

BACKGROUND: Stroke is the second most common cause of death and a major cause of disability worldwide. Risperidone is an atypical antipsychotic drug that may increase the risk of stroke. The present work examined whether risperidone enhances the vulnerability to stroke in hypertensive rats and the potential mechanisms underlying such action. METHODS: Experiment 1: Wistar-Kyoto (WKY) rats, spontaneously hypertensive rats (SHRs) and stroke-prone SHRs (SHR-SPs) were treated with risperidone (0.8 and 2.4 mg/kg/d) or vehicle for 30 consecutive days. Tissue damage in response to middle cerebral artery occlusion (MCAO) was measured microscopically. The activity of superoxide dismutase, glutathione peroxidase, the levels of malondialdehyde were also determined. Experiment 2: Survival data were recorded in SHR-SPs that received daily risperidone perpetually. Experiment 3: Effect of risperidone on interleukin-6 and tumor necrosis factor-α was examined in quiescent or LPS-activated cortical microglias from WKY rats. Experiment 4: Potential damage of risperidone exposure to neurons was examined in primary neuronal culture obtained from WKY rats, SHRs, and SHR-SPs. RESULTS: Risperidone increased infarct areas upon MCAO in SHR-SPs and SHRs, but not in WKY rats. Survival time in SHR-SPs was shortened by risperidone. Apoptosis was augmented by risperidone through enhanced Bax. Risperidone also increased endothelial injury. CONCLUSIONS: Risperidone enhances the vulnerability to stroke in hypertensive rats through increasing neuronal apoptosis and endothelial injury.


Assuntos
Hipertensão/patologia , Risperidona/toxicidade , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/patologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Hipertensão/complicações , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/etiologia
2.
Front Pharmacol ; 1: 6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21713105

RESUMO

Blood pressure reduction is an important and effective strategy in stroke prevention in hypertensives. Recently, we found that baroreflex restoration was also crucial in stroke prevention. The present work was designed to test the hypothesis that a combination of blood pressure reduction and baroreflex restoration may be a new strategy for stroke prevention. In Experiment 1, the effects of ketanserin (0.3, 1, 3, 10 mg/kg), amlodipine (0.3, 1, 2, 3 mg/kg) and their combination (1 + 0.3, 1 + 1, 1 + 2, 1 + 3 mg/kg) on blood pressure and baroreflex sensitivity (BRS) of stroke-prone spontaneously hypertensive rats (SHR-SP) were determined under conscious state. It was found that both amlodipine and ketanserin decreased blood pressure dose-dependently. Ketanserin enfanced BRS from a very small dose but amlodipine enfanced BRS only at largest dose used. At the dose of 1 + 2 mg/kg (ketanserin + amlodipine), the combination possessed the largest synergism on blood pressure reduction. In Experiments 2 and 3, SHR-SP and two-kidney, two-clip (2K2C) renovascular hypertensive rats received life-long treatments with ketanserin (1 mg/kg) and amlodipine (2 mg/kg) or their combination (0.5 + 1, 1 + 2, 2 + 4 mg/kg). The survival time was recorded and the brain lesion was examined. It was found that all kinds of treatments prolonged the survival time of SHR-SP and 2K2C rats. The combination possessed a significantly better effect on stroke prevention than mono-therapies. In conclusion, combination of blood pressure reduction and baroreflex restoration may be a new strategy for the prevention of stroke in hypertension.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa