Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225393

RESUMO

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Assuntos
Doença de Alzheimer , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Canais de Potencial de Receptor Transitório , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Camundongos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
2.
J Neuroinflammation ; 20(1): 21, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732771

RESUMO

BACKGROUND: The impairment in the autophagy-lysosomal pathway (ALP) and the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome represent two molecular events leading to neurodegeneration and neuroinflammation in Alzheimer's disease (AD), a devastating neurodegenerative disorder without a cure. Previously we demonstrated the cognitive-enhancing effect of a combined electroacupuncture (EA) therapy termed TNEA in a transgenic mouse model of AD, involving activation of transcription factor EB (TFEB), a master regulator of ALP. However, whether and how TNEA inhibits NLRP3 inflammasome via TFEB-mediated ALP in AD remains to be investigated. METHODS: 5xFAD mice overexpressing amyloid-ß (Aß) were treated with TNEA or EA on its composing acupoints (GB13 and GV24). The changes in the signaling pathways regulating NLRP3 inflammasome, the association of NLRP3 inflammasome with ALP, and the roles of TFEB/TFE3 in mice brains were determined by immunoblots, immunohistochemistry and AAV-mediated knockdown assays. RESULTS: TNEA inhibits the activation of NLRP3 inflammasome and the release of active interleukin 1ß (IL1B) in the hippocampi of 5xFAD mice. Mechanistically, TNEA promoted the autophagic degradation of inflammasome components via activating both TFEB and TFE3 by modulating kinases including AMPK and AKT. The composing acupoints in TNEA showed synergistic effects on regulating these molecular events and memory improvement. CONCLUSION: Our findings suggest that TNEA attenuates AD-associated memory impairment via promoting TFEB/TFE3-mediated autophagic clearance of Aß and NLRP3 inflammasome, and partially reveal the molecular basis of combined acupoints therapy originated from ancient wisdom.


Assuntos
Doença de Alzheimer , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Autofagia , Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
3.
J Biomed Sci ; 29(1): 85, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273169

RESUMO

BACKGROUND: Tauopathies are neurodegenerative diseases that are associated with the pathological accumulation of tau-containing tangles in the brain. Tauopathy can impair cognitive and motor functions and has been observed in Alzheimer's disease (AD) and frontotemporal dementia (FTD). The aetiology of tauopathy remains mysterious; however, recent studies suggest that the autophagic-endolysosomal function plays an essential role in the degradation and transmission of pathological tau. We previously demonstrated that tetrandrine could ameliorate memory functions and clear amyloid plaques in transgenic AD mice by restoring autophagic-endolysosomal function. However, the efficacy of tetrandrine and the associated therapeutic mechanism in tauopathies have not been evaluated and elucidated. METHODS: Novel object recognition, fear conditioning and electrophysiology were used to evaluate the effects of tetrandrine on memory functions in transgenic tau mice. Western blotting and immunofluorescence staining were employed to determine the effect of tetrandrine on autophagy and tau clearance in vivo. Calcium (Ca2+) imaging and flow cytometry were used to delineate the role of pathological tau and tetrandrine in lysosomal Ca2+ and pH homeostasis. Biochemical BiFC fluorescence, Western blotting and immunofluorescence staining were used to evaluate degradation of hyperphosphorylated tau in vitro, whereas coculture of brain slices with isolated microglia was used to evaluate tau clearance ex vivo. RESULTS: We observed that tetrandrine treatment mitigated tau tangle development and corrected memory impairment in Thy1-hTau.P301S transgenic mice. Mechanistically, we showed that mutant tau expression disrupts lysosome pH by increasing two-pore channel 2 (TPC2)-mediated Ca2+ release, thereby contributing to lysosome alkalinization. Tetrandrine inhibits TPC2, thereby restoring the lysosomal pH, promotes tau degradation via autophagy, and ameliorates tau aggregation. Furthermore, in an ex vivo assay, we demonstrated that tetrandrine treatment promotes pathological tau clearance by microglia. CONCLUSIONS: Together, these findings suggest that pathological tau disturbs endolysosomal homeostasis to impair tau clearance. This impairment results in a vicious cycle that accelerates disease pathogenesis. The success of tetrandrine in reducing tau aggregation suggests first, that tetrandrine could be an effective drug for tauopathies and second, that rescuing lysosomal Ca2+ homeostasis, thereby restoring ALP function, could be an effective general strategy for the development of novel therapies for tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Camundongos , Proteínas tau/genética , Cálcio , Modelos Animais de Doenças , Tauopatias/tratamento farmacológico , Tauopatias/patologia , Camundongos Transgênicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Cognição
4.
Acta Pharmacol Sin ; 43(5): 1251-1263, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34417577

RESUMO

Transcriptional factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis, is generally regarded as a pro-survival factor. Here, we identify that besides its effect on autophagy induction, TFEB exerts a pro-apoptotic effect in response to the cyclopentenone prostaglandin 15-deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2). Specifically, 15d-PGJ2 promotes TFEB translocation from the cytoplasm into the nucleus to induce autophagy and lysosome biogenesis via reactive oxygen species (ROS) production rather than mTORC1 inactivation. Surprisingly, TFEB promotes rather than inhibits apoptosis in response to 15d-PGJ2. Mechanistically, ROS-mediated TFEB translocation into the nucleus transcriptionally upregulates the expression of ATF4, which is required for apoptosis elicited by 15d-PGJ2. Additionally, inhibition of TFEB activation by ROS scavenger N-acetyl cysteine or inhibition of protein synthesis by cycloheximide effectively compromises ATF4 upregulation and apoptosis in response to 15d-PGJ2. Collectively, these results indicate that ROS-induced TFEB activation exerts a novel role in promoting apoptosis besides its role in regulating autophagy in response to 15d-PGJ2. This work not only evidences how TFEB is activated by 15d-PGJ2, but also unveils a previously unexplored role of ROS-dependent activation of TFEB in modulating cell apoptosis in response to 15d-PGJ2.


Assuntos
Prostaglandina D2 , Prostaglandinas , Apoptose , Autofagia , Ciclopentanos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/farmacologia , Prostaglandinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
5.
Acta Pharmacol Sin ; 43(10): 2511-2526, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35217810

RESUMO

Increasing evidence shows that autophagy impairment is involved in the pathogenesis and progression of neurodegenerative diseases including Parkinson's disease (PD). We previously identified a natural alkaloid named corynoxine B (Cory B) as a neuronal autophagy inducer. However, its brain permeability is relatively low, which hinders its potential use in treating PD. Thus we synthesized various derivatives of Cory B to find more potent autophagy inducers with improved brain bioavailability. In this study, we evaluated the autophagy-enhancing effect of CB6 derivative and its neuroprotective action against PD in vitro and in vivo. We showed that CB6 (5-40 µM) dose-dependently accelerated autophagy flux in cultured N2a neural cells through activating the PIK3C3 complex and promoting PI3P production. In MPP+-treated PC12 cells, CB6 inhibited cell apoptosis and increased cell viability by inducing autophagy. In MPTP-induced mouse model of PD, oral administration of CB6 (10, 20 mg· kg-1· d-1, for 21 days) significantly improved motor dysfunction and prevented the loss of dopaminergic neurons in the striatum and substantia nigra pars compacta. Collectively, compound CB6 is a brain-permeable autophagy enhancer via PIK3C3 complex activation, which may help the prevention or treatment of PD.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Alcaloides/farmacologia , Animais , Autofagia , Classe III de Fosfatidilinositol 3-Quinases/farmacologia , Neurônios Dopaminérgicos , Indóis , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/patologia , Ratos , Compostos de Espiro
6.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408965

RESUMO

Eukaryotic cells possess a plethora of regulatory mechanisms to maintain homeostasis and ensure proper biochemical functionality. Autophagy, a central, conserved self-consuming process of the cell, ensures the timely degradation of damaged cellular components. Several studies have demonstrated the important roles of autophagy activation in mitigating neurodegenerative diseases, especially Alzheimer's disease (AD). However, surprisingly, activation of macroautophagy has not shown clinical efficacy. Hence, alternative strategies are urgently needed for AD therapy. In recent years, selective autophagy has been reported to be involved in AD pathology, and different subtypes have been identified, such as aggrephagy, mitophagy, reticulophagy, lipophagy, pexophagy, nucleophagy, lysophagy and ribophagy. By clarifying the underlying mechanisms governing these various subtypes, we may come to understand how to control autophagy to treat AD. In this review, we summarize the latest findings concerning the role of selective autophagy in the pathogenesis of AD. The evidence overwhelmingly suggests that selective autophagy is an active mechanism in AD pathology, and that regulating selective autophagy would be an effective strategy for controlling this pathogenesis.


Assuntos
Doença de Alzheimer , Macroautofagia , Doença de Alzheimer/patologia , Autofagia/fisiologia , Humanos , Mitofagia/fisiologia
7.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098449

RESUMO

Abstract: TFEB (transcription factor EB), which is a master regulator of autophagy and lysosome biogenesis, is considered to be a new therapeutic target for Parkinson's disease (PD). However, only several small-molecule TFEB activators have been discovered and their neuroprotective effects in PD are unclear. In this study, a curcumin derivative, named E4, was identified as a potent TFEB activator. Compound E4 promoted the translocation of TFEB from cytoplasm into nucleus, accompanied by enhanced autophagy and lysosomal biogenesis. Moreover, TFEB knockdown effectively attenuated E4-induced autophagy and lysosomal biogenesis. Mechanistically, E4-induced TFEB activation is mainly through AKT-MTORC1 inhibition. In the PD cell models, E4 promoted the degradation of α-synuclein and protected against the cytotoxicity of MPP+ (1-methyl-4-phenylpyridinium ion) in neuronal cells. Overall, the TFEB activator E4 deserves further study in animal models of neurodegenerative diseases, including PD.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Curcumina/farmacologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , 1-Metil-4-fenilpiridínio/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/prevenção & controle , Neurônios/citologia , Neurônios/efeitos dos fármacos , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/prevenção & controle , Interferência de RNA , Ratos , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/metabolismo
8.
Molecules ; 24(11)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212585

RESUMO

AIM: To investigate the anti-diabetic activity of amentoflavone (AME) in diabetic mice, and to explore the potential mechanisms. METHODS: Diabetic mice induced by high fat diet and streptozotocin were administered with amentoflavone for 8 weeks. Biochemical indexes were tested to evaluate its anti-diabetic effect. Hepatic steatosis, the histopathology change of the pancreas was evaluated. The activity of glucose metabolic enzymes, the expression of Akt and pAkt, and the glucose transporter type 4 (GLUT4) immunoreactivity were detected. RESULTS: AME decreased the level of glucose, total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and glucagon, and increased the levels of high density lipoprotein cholesterol (HDL-C) and insulin. Additionally, AME increased the activity of glucokinase (GCK), phosphofructokinase-1 (PFK-1), and pyruvate kinase (PK), and inhibited the activity of glycogen synthase kinase-3 (GSK-3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G-6-Pase). Mechanistically, AME increased superoxide dismutase (SOD), decreased malondialdehyde (MDA), activation of several key signaling molecules including pAkt (Ser473), and increased the translocation to the sedimenting membranes of GLUT4 in skeletal muscle tissue. CONCLUSIONS: AME exerted anti-diabetic effects by regulating glucose and lipid metabolism, perhaps via anti-oxidant effects and activating the PI3K/Akt pathway. Our study provided novel insight into the role and underlying mechanisms of AME in diabetes.


Assuntos
Biflavonoides/química , Biflavonoides/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Animais , Biomarcadores , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental , Jejum , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Glucagon/sangue , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Lipoproteínas/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação
9.
Front Plant Sci ; 15: 1352465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384759

RESUMO

Salt stress poses a significant challenge to crop productivity, and understanding the genetic basis of salt tolerance is paramount for breeding resilient soybean varieties. In this study, a soybean natural population was evaluated for salt tolerance during the germination stage, focusing on key germination traits, including germination rate (GR), germination energy (GE), and germination index (GI). It was seen that under salt stress, obvious inhibitions were found on these traits, with GR, GE, and GI diminishing by 32% to 54% when compared to normal conditions. These traits displayed a coefficient of variation (31.81% to 50.6%) and a substantial generalized heritability (63.87% to 86.48%). Through GWAS, a total of 1841 significant single-nucleotide polymorphisms (SNPs) were identified to be associated with these traits, distributed across chromosome 2, 5, 6, and 20. Leveraging these significant association loci, 12 candidate genes were identified to be associated with essential functions in coordinating cellular responses, regulating osmotic stress, mitigating oxidative stress, clearing reactive oxygen species (ROS), and facilitating heavy metal ion transport - all of which are pivotal for plant development and stress tolerance. To validate the candidate genes, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was conducted, revealing three highly expressed genes (Glyma.02G067700, Glyma.02G068900, and Glyma.02G070000) that play pivotal roles in plant growth, development, and osmoregulation. In addition, based on these SNPs related with salt tolerance, KASP (Kompetitive Allele-Specific PCR)markers were successfully designed to genotype soybean accessions. These findings provide insight into the genetic base of soybean salt tolerance and candidate genes for enhancing soybean breeding programs in this study.

10.
J Mater Chem B ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38978513

RESUMO

Extracellular clustering of amyloid-ß (Aß) and an impaired autophagy lysosomal pathway (ALP) are the hallmark features in the early stages of incurable Alzheimer's disease (AD). There is a pressing need to find or develop new small molecules for diagnostics and therapeutics for the early stages of AD. Herein, we report a small molecule, namely F-SLCOOH, which can bind and detect Aß1-42, Iowa mutation Aß, Dutch mutation Aß fibrils and oligomers exhibiting enhanced emission with high affinity. Importantly, F-SLCOOH can readily pass through the blood-brain barrier and shows highly selective binding toward the extracellular Aß aggregates in real-time in live animal imaging of a 5XFAD mice model. In addition, a high concentration of F-SLCOOH in both brain and plasma of wildtype mice after intraperitoneal administration was found. The ex vivo confocal imaging of hippocampal brain slices indicated excellent colocalization of F-SLCOOH with Aß positive NU1, 4G8, 6E10 A11 antibodies and THS staining dye, affirming its excellent Aß specificity and targetability. The molecular docking studies have provided insight into the unique and specific binding of F-SLCOOH with various Aß species. Importantly, F-SLCOOH exhibits remarkable anti-fibrillation properties against toxic Aß aggregate formation of Aß1-42, Iowa mutation Aß, and Dutch mutation Aß. F-SLCOOH treatment also exerts high neuroprotective functions and promotes autophagy lysosomal biogenesis in neuronal AD cell models. In summary, the present results suggest that F-SLCOOH is a highly promising theranostic agent for diagnosis and therapeutics of AD.

11.
Biomedicines ; 11(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509695

RESUMO

Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for delivering these therapeutics across the blood-brain barrier to treat Alzheimer's disease (AD). This review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally, it investigates the critical BEV networks in the microbiome-gut-brain axis, their defensive and offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the autophagy-lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude, this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly discover new therapeutic strategies.

12.
J Neuroimmune Pharmacol ; 18(3): 509-528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37682502

RESUMO

The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aß) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aß and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aß and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.

13.
Signal Transduct Target Ther ; 8(1): 404, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37867176

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the predominant impairment of neurons in the hippocampus and the formation of amyloid plaques, hyperphosphorylated tau protein, and neurofibrillary tangles in the brain. The overexpression of amyloid-ß precursor protein (APP) in an AD brain results in the binding of APP intracellular domain (AICD) to Fe65 protein via the C-terminal Fe65-PTB2 interaction, which then triggers the secretion of amyloid-ß and the consequent pathogenesis of AD. Apparently, targeting the interaction between APP and Fe65 can offer a promising therapeutic approach for AD. Recently, exosome, a type of extracellular vesicle with diameter around 30-200 nm, has gained much attention as a potential delivery tool for brain diseases, including AD, due to their ability to cross the blood-brain barrier, their efficient uptake by autologous cells, and their ability to be surface-modified with target-specific receptor ligands. Here, the engineering of hippocampus neuron cell-derived exosomes to overexpress Fe65, enabled the development of a novel exosome-based targeted drug delivery system, which carried Corynoxine-B (Cory-B, an autophagy inducer) to the APP overexpressed-neuron cells in the brain of AD mice. The Fe65-engineered HT22 hippocampus neuron cell-derived exosomes (Fe65-EXO) loaded with Cory-B (Fe65-EXO-Cory-B) hijacked the signaling and blocked the natural interaction between Fe65 and APP, enabling APP-targeted delivery of Cory-B. Notably, Fe65-EXO-Cory-B induced autophagy in APP-expressing neuronal cells, leading to amelioration of the cognitive decline and pathogenesis in AD mice, demonstrating the potential of Fe65-EXO-Cory-B as an effective therapeutic intervention for AD.


Assuntos
Doença de Alzheimer , Exossomos , Camundongos , Animais , Doença de Alzheimer/patologia , Exossomos/genética , Exossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Neurônios/patologia
14.
Front Immunol ; 13: 833515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309340

RESUMO

Parkinson's Disease (PD) is a neurodegenerative disease that affects the elderly. It is associated with motor dysfunction due to the accumulation of misfolded or aggregated fibrillar alpha-synuclein (α-syn) in the mid-brain. Current treatments are mainly focused on relieving the symptoms but are accompanied by side effects and are limited in halting disease progression. Increasing evidence points to peripheral immune cells underlying disease development, especially T cells contributing to α-syn-related neuroinflammation in PD. The onset of these cells is likely mediated by dendritic cells (DCs), whose role in α-syn-specific responses remain less studied. Moreover, Traditional Chinese medicine (TCM)-derived compounds that are candidates to treat PD may alleviate DC-T cell-mediated immune responses. Therefore, our study focused on the role of DC in response to fibrillar α-syn and subsequent induction of antigen-specific T cell responses, and the effect of TCM Curcumin-analog C1 and Tripterygium wilfordii Hook F-derived Celastrol. We found that although fibrillar α-syn did not induce significant inflammatory or T cell-mediating cytokines, robust pro-inflammatory T cell responses were found by co-culturing fibrillar α-syn-pulsed DCs with α-syn-specific CD4+ T cells. Celastrol, but not C1, reduced the onset of pro-inflammatory T cell differentiation, through promoting interaction of endosomal, amphisomal, and autophagic vesicles with fibrillar α-syn, which likely lead to its degradation and less antigen peptides available for presentation and T cell recognition. In conclusion, regulating the intracellular trafficking/processing of α-syn by DCs can be a potential approach to control the progression of PD, in which Celastrol is a potential candidate to accomplish this.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Idoso , Células Dendríticas/metabolismo , Humanos , Doença de Parkinson/metabolismo , Triterpenos Pentacíclicos , Linfócitos T/metabolismo , alfa-Sinucleína/metabolismo
15.
16.
Front Plant Sci ; 13: 935654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845666

RESUMO

Kernel size is an important agronomic trait for grain yield in maize. The purpose of this study was to validate a major quantitative trait locus (QTL), qKW-1, which was identified in the F2 and F2:3 populations from a cross between the maize inbred lines SG5/SG7 and to predict candidate genes for kernel width (KW) in maize. A major QTL, qKW-1, was mapped in multiple environments in our previous study. To validate and fine map qKW-1, near-isogenic lines (NILs) with 469 individuals were developed by continuous backcrossing between SG5 as the donor parent and SG7 as the recurrent parent. Marker-assisted selection was conducted from the BC2F1 generation with simple sequence repeat (SSR) markers near qKW-1. A secondary linkage map with four markers, PLK12, PLK13, PLK15, and PLK17, was developed and used for mapping the qKW-1 locus. Finally, qKW-1 was mapped between the PLK12 and PLK13 intervals, with a distance of 2.23 cM to PLK12 and 0.04 cM to PLK13, a confidence interval of 5.3 cM and a phenotypic contribution rate of 23.8%. The QTL mapping result obtained was further validated by using selected overlapping recombinant chromosomes on the target segment of maize chromosome 3. Transcriptome analysis showed that a total of 12 out of 45 protein-coding genes differentially expressed between the two parents were detected in the identified qKW-1 physical interval by blasting with the Zea_Mays_B73 v4 genome. GRMZM2G083176 encodes the Niemann-Pick disease type C, and GRMZM2G081719 encodes the nitrate transporter 1 (NRT1) protein. The two genes GRMZM2G083176 and GRMZM2G081719 were predicted to be candidate genes of qKW-1. Reverse transcription-polymerase chain reaction (RT-qPCR) validation was conducted, and the results provide further proof of the two candidate genes most likely responsible for qKW-1. The work will not only help to understand the genetic mechanisms of KW in maize but also lay a foundation for further cloning of promising loci.

17.
J Ethnopharmacol ; 282: 114603, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34496264

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Eucommia ulmoides (E. ulmoides) leaves are included in the Chinese Pharmacopoeia, and are traditionally used to treat hypertension, obesity, diabetes, and other diseases. Numerous pharmacological studies have shown that E. ulmoides has a good effect on lowering blood lipids and can improve obesity and nonalcoholic fatty liver. AIM: To study the mechanism of E. ulmoides leaves in regulating nonalcoholic fatty liver disease by combining prediction and validation. METHODS: Using network pharmacology, and molecular docking to predict E. ulmoides in regulating the action mechanism and potential active ingredients of nonalcoholic fatty liver, large hole adsorption resin enrichment active sites, in vitro experiments were performed to verify its fat-lowering effect and mechanism. RESULTS: The major components of E. ulmoides leaves exhibited good combination with lipid metabolism-regulating core proteins, particularly flavonoids. EUL 50 significantly reduced lipid accumulation, and increased PPARγ. Compared with the control group, the autophagy level increased after the administration of EUL 50. PPARγ decreased significantly after the addition of chloroquine (CQ, autophagy inhibitor). CONCLUSION: The active ingredients in E. ulmoides leaves regulating nonalcoholic fatty liver disease are mainly flavonoids and phenolics. EUL 50 may play a role in lowering lipids by regulating PPARγ expression through inducing autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Eucommiaceae , Hepatopatia Gordurosa não Alcoólica , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular/métodos , Farmacologia em Rede/métodos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Folhas de Planta
18.
Biomedicines ; 10(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327507

RESUMO

Alzheimer's disease (AD) is an age-associated neurodegenerative disease; it is the most common cause of senile dementia. Klotho, a single-pass transmembrane protein primarily generated in the brain and kidney, is active in a variety of metabolic pathways involved in controlling neurodegeneration and ageing. Recently, many studies have found that the upregulation of Klotho can improve pathological cognitive deficits in an AD mice model and have demonstrated that Klotho plays a role in the induction of autophagy, a major contributing factor for AD. Despite the close association between Klotho and neurodegenerative diseases, such as AD, the underlying mechanism by which Klotho contributes to AD remains poorly understood. In this paper, we will introduce the expression, location and structure of Klotho and its biological functions. Specifically, this review is devoted to the correlation of Klotho protein and the AD phenotype, such as the effect of Klotho in upregulating the amyloid-beta clearance and in inducing autophagy for the clearance of toxic proteins, by regulating the autophagy lysosomal pathway (ALP). In summary, the results of multiple studies point out that targeting Klotho would be a potential therapeutic strategy in AD treatment.

19.
Phytomedicine ; 96: 153887, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34936968

RESUMO

BACKGROUND: Collective evidences have indicated that intracellular accumulation of hyperphosphorylated tau forms neurofibrillary tangles in the brain, which impairs memory, cognition and affects social activities in Alzheimer's disease (AD). PURPOSE: To investigate the tau-reducing, and memory-enhancing properties of protopine (PRO), a natural alkaloid isolated from Chinese herbal medicine Corydalis yanhusuo (Yanhusuo in Chinese). STUDY DESIGN: By using Histone deacetylase 6 (HDAC6) profiling and immunoprecipitation assays, we assessed that PRO mediated the heat shock protein 90 (HSP90) chaperonic activities for the degradation of pathological tau in AD cell culture models. To study the efficacy of PRO in vivo, we employed 3xTg-AD and P301S tau mice models. METHODS: Liquid chromatography/quadrupole time-of-flight mass spectrometry was used to analyze the pharmacokinetic profile of PRO. Seven-month-old 3xTg-AD mice and 1.5-month-old P301S mice were administered PRO (1 and 2.5 mg/kg) orally every day. Morris water maze, contextual fear conditioning and rotarod assays were applied for studying memory functions. Sarkosyl differential centrifugation was used to analyze soluble and insoluble tau. Immunohistochemical analysis were performed to determine tau deposits in AD mice's brain sections. Molecular docking, binding affinity studies and primary cell culture studies were performed to demonstrate the mechanism of action of PRO in silico and in vitro. RESULTS: Our pharmacokinetic profiling demonstrated that PRO significantly entered the brain at a concentration of 289.47 ng/g, and specifically attenuated tau pathology, improved learning and memory functions in both 3xTg-AD and P301S mice. Docking, binding affinity studies, and fluorometric assays demonstrated that PRO directly bound to the catalytic domain 1 (CD1) of HDAC6 and down-regulated its activity. In primary cortical neurons, PRO enhanced acetylation of α-tubulin, indicating HDAC6 inhibition. Meanwhile, PRO promoted the ubiquitination of tau and recruited heat shock protein 70 (HSP70) and heat shock cognate complex 71 (HSC70) for the degradation of pathological tau via the ubiquitin-proteasomal system (UPS). CONCLUSION: We identified PRO as a natural HDAC6 inhibitor that attenuated tau pathology and improved memory dysfunctions in AD mice. The findings from this study provides a strong justification for future clinical development of plant-derived protopine as a novel agent for the treatment of tau-related neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Desacetilase 6 de Histona , Doença de Alzheimer/tratamento farmacológico , Animais , Benzofenantridinas , Alcaloides de Berberina , Modelos Animais de Doenças , Desacetilase 6 de Histona/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Proteínas tau
20.
Redox Biol ; 51: 102280, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35286997

RESUMO

Accumulation of amyloid-ß (Aß) oligomers and phosphorylated Tau aggregates are crucial pathological events or factors that cause progressive neuronal loss, and cognitive impairments in Alzheimer's disease (AD). Current medications for AD have failed to halt, much less reverse this neurodegenerative disorder; therefore, there is an urgent need for the development of effective and safe drugs for AD therapy. In the present study, the in vivo therapeutic efficacy of an Aß-oligomer-targeted fluorescent probe, F-SLOH, was extensively investigated in 5XFAD and 3XTg-AD mouse models. We have shown that F-SLOH exhibits an efficient inhibitory activity against Aß aggregation in vivo, and acts as an effective theranostic agent for the treatment of multiple neuropathological changes in AD mouse models. F-SLOH has been found to significantly reduce not only the levels of Aß oligomers, Tau aggregates and plaques but also the levels of amyloid precursor protein (APP) and its metabolites via autophagy lysosomal degradation pathway (ALP) in the brains of 5XFAD and 3XTg-AD mice. It also reduces astrocyte activation and microgliosis ultimately alleviating neuro-inflammation. Furthermore, F-SLOH mitigates hyperphosphorylated Tau aggregates, synaptic deficits and ameliorates synaptic memory function, and cognitive impairment in AD mouse models. The mechanistic studies have shown that F-SLOH promotes the clearance of C-terminal fragment 15 (CTF15) of APP and Paired helical filaments of Tau (PHF1) in stable cell models via the activation of transcription factor EB (TFEB). Moreover, F-SLOH promotes ALP and lysosomal biogenesis for the clearance of soluble, insoluble Aß, and phospho Tau. Our results unambiguously reveal effective etiological capabilities of theranostic F-SLOH to target and intervene multiple neuropathological changes in AD mouse models. Therefore, F-SLOH demonstrates tremendous therapeutic potential for treating AD in its early stage.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Nanomedicina Teranóstica , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa