Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(9): 2530-2540, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38690830

RESUMO

Dinitrotoluene sulfonates (DNTSes) are highly toxic hazards regulated by the Resource Conservation and Recovery Act (RCRA) in the United States. The trinitrotoluene (TNT) red water formed during the TNT purification process consists mainly of DNTSes. Certain plants, including switchgrass, reed and alfalfa, can detoxify low concentrations of DNTS in TNT red water-contaminated soils. However, the precise mechanism by which these plants detoxify DNTS remains unknown. In order to aid in the development of phytoremediation resources with high DNTS removal rates, we identified and characterized 1-hydroxymethyl-2,4-dinitrobenzene sulfonic acid (HMDNBS) and its glycosylated product HMDNBS O-glucoside as the degradation products of 2,4-DNT-3-SO3Na, the major isoform of DNTS in TNT red water-contaminated soils, in switchgrass via LC-MS/MS- and NMR-based metabolite analyses. Transcriptomic analysis revealed that 15 UDP-glycosyltransferase genes were dramatically upregulated in switchgrass plants following 2,4-DNT-3-SO3Na treatment. We expressed, purified and assayed the activity of recombinant UGT proteins in vitro and identified PvUGT96C10 as the enzyme responsible for the glycosylation of HMDNBS in switchgrass. Overexpression of PvUGT96C10 in switchgrass significantly alleviated 2,4-DNT-3-SO3Na-induced plant growth inhibition. Notably, PvUGT96C10-overexpressing transgenic switchgrass plants removed 83.1% of 2,4-DNT-3-SO3Na in liquid medium after 28 days, representing a 3.2-fold higher removal rate than that of control plants. This work clarifies the DNTS detoxification mechanism in plants for the first time, suggesting that PvUGT96C10 is crucial for DNTS degradation. Our results indicate that PvUGT96C10-overexpressing plants may hold great potential for the phytoremediation of TNT red water-contaminated soils.


Assuntos
Biodegradação Ambiental , Glicosiltransferases , Panicum , Panicum/genética , Panicum/metabolismo , Panicum/enzimologia , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Dinitrobenzenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Poluentes do Solo/metabolismo
2.
Physiol Plant ; 176(3): e14364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837226

RESUMO

Phytoremediation is a promising technology for removing the high-toxic explosive 2,4,6-trinitrotoluene (TNT) pollutant from the environment. Mining dominant genes is the key research direction of this technology. Most previous studies have focused on the detoxification of TNT rather than plants' TNT tolerance. Here, we conducted a transcriptomic analysis of wild type Arabidopsis plants under TNT stress and found that the Arabidopsis cytochrome P450 gene CYP81D11 was significantly induced in TNT-treated plants. Under TNT stress, the root length was approximately 1.4 times longer in CYP81D11-overexpressing transgenic plants than in wild type plants. The half-removal time for TNT was much shorter in CYP81D11-overexpressing transgenic plants (1.1 days) than in wild type plants (t1/2 = 2.2 day). In addition, metabolic analysis showed no difference in metabolites in transgenic plants compared to wild type plants. These results suggest that the high TNT uptake rates of CYP81D11-overexpressing transgenic plants were most likely due to increased tolerance and biomass rather than TNT degradation. However, CYP81D11-overexpressing plants were not more tolerant to osmotic stresses, such as salt or drought. Taken together, our results indicate that CYP81D11 is a promising target for producing bioengineered plants with high TNT removing capability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450 , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Trinitrotolueno , Arabidopsis/genética , Arabidopsis/metabolismo , Trinitrotolueno/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética
3.
Plant Cell Environ ; 44(9): 3173-3183, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34008171

RESUMO

Dinitrotoluene (DNT) has been extensively used in manufacturing munitions, polyurethane foams and other important chemical products. However, it is highly toxic and mutagenic to most organisms. Here, we synthesized a codon-optimized bacterial nitroreductase gene, NfsI, for plant expression. The kinetic analysis indicates that the recombinant NfsI can detoxify both 2,4-DNT and its sulfonate (DNTS), while it has a 97.6-fold higher catalytic efficiency for 2,4-DNT than DNTS. Furthermore, we overexpressed NfsI in switchgrass (Panicum virgatum L.), which is a multiple-purpose crop used for fodder and biofuel production as well as phytoremediation. The 2,4-DNT treatment inhibited root elongation of wild-type switchgrass plants and promoted reactive oxygen species (ROS) accumulation in roots. In contrast, overexpression of NfsI in switchgrass significantly alleviated 2,4-DNT-induced root growth inhibition and ROS overproduction. Thus, the NfsI overexpressing transgenic switchgrass plant removed 94.1% 2,4-DNT after 6 days, whose efficiency was 1.7-fold higher than control plants. Moreover, the comparative transcriptome analysis suggests that 22.9% of differentially expressed genes induced by 2,4-DNT may participate in NfsI-mediated 2,4-DNT detoxification in switchgrass. Our work sheds light on the function of NfsI during DNT phytoremediation for the first time, revealing the application potential of switchgrass plants engineered with NfsI.


Assuntos
Biodegradação Ambiental , Dinitrobenzenos/metabolismo , Nitrorredutases/metabolismo , Panicum/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Catálise , Enterobacter cloacae/enzimologia , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , NADP/metabolismo , Panicum/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Espécies Reativas de Oxigênio/metabolismo
4.
J Exp Bot ; 69(16): 3963-3973, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29860438

RESUMO

The brown midrib2 (bm2) mutant of maize, which has a modified lignin composition, contains a mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. Here, we show that a MITE transposon insertion caused down-regulation of MTHFR, with an accompanying decrease in 5-methyl-tetrahydrofolate and an increase in 5, 10-methylene-tetrahydrofolate and tetrahydrofolate in the bm2 mutant. Furthermore, MTHFR mutation did not change the content of S-adenosyl methionine (SAM), the methyl group donor involved in the biosynthesis of guaiacyl and syringyl lignins, but increased the level of S-adenosyl homocysteine (SAH), the demethylation product of SAM. Moreover, competitive inhibition of the maize caffeoyl CoA O-methyltransferase (CCoAOMT) and caffeic acid O-methyltransferase (COMT) enzyme activities by SAH was found, suggesting that the SAH/SAM ratio, rather than the concentration of SAM, regulates the transmethylation reactions of lignin intermediates. Phenolic profiling revealed that caffeoyl alcohol glucose derivatives accumulated in the bm2 mutant, indicating impaired 3-O-methylation of monolignols. A remarkable increase in the unusual catechyl lignin in the mutant demonstrates that MTHFR down-regulation mainly affects guaiacyl lignin biosynthesis, consistent with the observation that CCoAOMT is more sensitive to SAH inhibition than COMT. This study uncovered a novel regulatory mechanism in lignin biosynthesis, which may offer an effective approach to utilizing lignocellulosic feedstocks in the future.


Assuntos
Lignina/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Zea mays/metabolismo , Regulação para Baixo , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mutação , Zea mays/enzimologia , Zea mays/genética
5.
Int J Genomics ; 2019: 8514928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31093492

RESUMO

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.

6.
Biotechnol Biofuels ; 12: 82, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007716

RESUMO

BACKGROUND: Maize brown midrib (bm) mutants associated with impaired lignin biosynthesis are a potential source for the breed of novel germplasms with improved cell wall digestibility. The spontaneous bm5 mutants had been identified since 2008. However, the gene responsible for the bm5 locus, and the comprehensive effects of bm5 mutation on lignin biosynthesis, soluble phenolics accumulation, and cell wall degradation have yet to be elucidated. RESULTS: The bm5 locus was identified to encode a major 4-coumarate: coenzyme A ligase (Zm4CL1) through analyzing MutMap-assisted gene mapping data. Two alleles of Zm4CL1 isolated from bm5 mutants contained two transposons inserted in the first exon and the second intron, respectively, and consequently, the activities of 4CLs in the crude enzyme extracts from bm5 midribs were reduced by 51-62% compared with the wild type. Furthermore, five 4CLs were retrieved from maize genome, and Zm4CL1 was the most highly expressed one in the lignified tissues. Mutation of Zm4CL1 mainly impeded the biosynthesis of guaiacyl (G) lignins and increased the level of soluble feruloyl derivatives without impacting maize growth and development. Moreover, both neutral detergent fiber digestibility and saccharification efficiency of cell walls were significantly elevated in the bm5 mutant. CONCLUSIONS: Zm4CL1 was identified as the Bm5 gene, since two independent alleles of Zm4CL1 were associated with the same mutant phenotype. Mutation of Zm4CL1 mainly affected G lignin biosynthesis and soluble feruloyl derivatives accumulation in maize lignified tissues. The reduced recalcitrance of the bm5 mutant suggests that Zm4CL1 is an elite target for cell wall engineering, and genetic manipulation of this gene will facilitate the utilization of crop straw and stover that have to be dealt with for environmental protection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa