Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 39(1): 2314233, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38385332

RESUMO

The structure-activity relationship (SAR) between toxicity and the types of linking ketones of C7 bridged monocarbonyl curcumin analogs (MCAs) was not clear yet. In the pursuit of effective and less cytotoxic chemotherapeutics, we conducted a SAR analysis using various diketene skeletons of C7-bridged MCAs, synthesized cyclic C7-bridged MCAs containing the identified low-toxicity cyclopentanone scaffold and an o-methoxy phenyl group, and assessed their anti-gastric cancer activity and safety profile. Most compounds exhibited potent cytotoxic activities against gastric cancer cells. We developed a quantitative structure-activity relationship model (R2 > 0.82) by random Forest method, providing important information for optimizing structure. An optimized compound 2 exhibited in vitro and in vivo anti-gastric cancer activity partly through inhibiting the AKT and STAT3 pathways, and displayed a favorable in vivo safety profile. In summary, this paper provided a promising class of MCAs and a potential compound for the development of chemotherapeutic drugs.


Assuntos
Antineoplásicos , Curcumina , Neoplasias Gástricas , Humanos , Curcumina/farmacologia , Curcumina/química , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/química , Relação Estrutura-Atividade , Relação Quantitativa Estrutura-Atividade , Linhagem Celular Tumoral
2.
Eur J Med Chem ; 234: 114244, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278752

RESUMO

Due to numerous side effects of traditional treatments for toxoplasmosis, it is urgent to develop new anti-Toxoplasma agents with high efficiency and low toxicity. In this study, using drug-food-homologous chalcone skeleton as a leading compound, 6 series of chalcone derivatives were designed, synthesized, and almost 1/2 compounds have good anti-Toxoplasma activity in vitro. The quantitative structure-activity relationship model of the anti-Toxoplasma activity of the second batch of compounds was established by random forest method (R2 = 0.9407). The Michael receptor in the molecular skeleton of chalcones plays an important role in improving the activity. Among these compounds, four chalcone derivatives exhibited potent anti-T. gondii activity and low cytotoxicity in vitro. Specifically, three of them (4a, 4c and 5e) effectively inhibited the proliferation of Toxoplasma tachyzoites in vivo. Liver and spleen index and biochemical parameters, such as alanine aminotransferase, aspartate aminotransferase and malondialdehyde were significantly decreased by the three chalcone derivatives, suggesting that they have protective effects on the liver of mice infected with Toxoplasma tachyzoites. Overall, this article provides a series of promising compounds for the development of anti-Toxoplasma agents.


Assuntos
Antiprotozoários , Chalcona , Chalconas , Toxoplasma , Toxoplasmose , Animais , Antiprotozoários/química , Aspartato Aminotransferases , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Camundongos , Toxoplasmose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa