Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mol Cancer ; 23(1): 13, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217023

RESUMO

The tumor microenvironment (TME) is an intricate system comprised of tumor cells and the surrounding cellular and non-cellular components, exerting a pivotal influence on the initiation and progression of tumors. Exhibiting dynamic and diverse compositions as well as functional states across various tumors and patients, a profound comprehension of its specific internal interactions is indispensable for formulating efficacious anti-cancer treatment strategies. Extensive interactions among various immune cell types within the TME are well-documented, with their phenotypes and abundances closely linked to clinical prognoses. TME research is progressing towards greater complexity and precision, yet, to date, no representative TME biomarkers suitable for clinical applications have been definitively identified and validated. In a recent study, the collaborative actions of CXCL9 and SPP1 (CXCL9:SPP1) were found to collectively dictate the polarity of tumor-associated macrophages (TAMs) within the TME, exerting profound effects on tumor progression and treatment responses. The mutually exclusive expression of CXCL9:SPP1 in the TME not only governs TAM polarity but also exhibits strong correlations with immune cell profiles, antitumor factors, and patient outcomes, significantly influencing prognosis. This article consolidates the significance and prospects of CXCL9:SPP1 as a novel indicator for tumor development and prognosis, while also proposing future research directions and addressing potential challenges in this promising field.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Prognóstico , Fenótipo , Microambiente Tumoral , Quimiocina CXCL9 , Osteopontina
2.
Cell Mol Biol Lett ; 29(1): 89, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877420

RESUMO

CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication. In the plant kingdom, circR-loop wield influence over processes such as alternative splicing and centromere organization, impacting the intricacies of floral development and genome stability, respectively. Their significance extends to the animal domain, where circR-loop has captured attention for their roles in cancer-related phenomena, exerting control over transcription, chromatin architecture, and orchestrating responses to DNA damage. Moreover, their involvement in nuclear export anomalies further underscores their prominence in cellular regulation. This article summarizes the important regulatory mechanisms and physiological roles of circR-loop in plants and animals, and offers a comprehensive exploration of the methodologies employed for the identification, characterization, and functional analysis of circR-loop, underscoring the pressing need for innovative approaches that can effectively distinguish them from their linear RNA counterparts while elucidating their precise functions. Lastly, the article sheds light on the challenges and opportunities that lie ahead in the field of circR-loop research, emphasizing the vital importance of continued investigations to uncover their regulatory roles and potential applications in the realm of biology. In summary, circR-loop represents a captivating and novel regulatory mechanism with broad-reaching implications spanning the realms of genetics, epigenetics, and disease biology. Their exploration opens new avenues for comprehending gene regulation and holds significant promise for future therapeutic interventions.


Assuntos
Instabilidade Genômica , RNA Circular , Instabilidade Genômica/genética , Humanos , Animais , RNA Circular/genética , RNA Circular/metabolismo , DNA/metabolismo , DNA/genética , Estruturas R-Loop/genética , RNA/metabolismo , RNA/genética , Replicação do DNA/genética
3.
J Virol ; 96(7): e0005722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319225

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused over 5 million deaths worldwide. Pneumonia and systemic inflammation contribute to its high mortality. Many viruses use heparan sulfate proteoglycans as coreceptors for viral entry, and heparanase (HPSE) is a known regulator of both viral entry and inflammatory cytokines. We evaluated the heparanase inhibitor Roneparstat, a modified heparin with minimum anticoagulant activity, in pathophysiology and therapy for COVID-19. We found that Roneparstat significantly decreased the infectivity of SARS-CoV-2, SARS-CoV-1, and retroviruses (human T-lymphotropic virus 1 [HTLV-1] and HIV-1) in vitro. Single-cell RNA sequencing (scRNA-seq) analysis of cells from the bronchoalveolar lavage fluid of COVID-19 patients revealed a marked increase in HPSE gene expression in CD68+ macrophages compared to healthy controls. Elevated levels of HPSE expression in macrophages correlated with the severity of COVID-19 and the expression of inflammatory cytokine genes, including IL6, TNF, IL1B, and CCL2. In line with this finding, we found a marked induction of HPSE and numerous inflammatory cytokines in human macrophages challenged with SARS-CoV-2 S1 protein. Treatment with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-mediated inflammatory cytokine release from human macrophages, through disruption of NF-κB signaling. HPSE knockdown in a macrophage cell line also showed diminished inflammatory cytokine production during S1 protein challenge. Taken together, this study provides a proof of concept that heparanase is a target for SARS-CoV-2-mediated pathogenesis and that Roneparstat may serve as a dual-targeted therapy to reduce viral infection and inflammation in COVID-19. IMPORTANCE The complex pathogenesis of COVID-19 consists of two major pathological phases: an initial infection phase elicited by SARS-CoV-2 entry and replication and an inflammation phase that could lead to tissue damage, which can evolve into acute respiratory failure or even death. While the development and deployment of vaccines are ongoing, effective therapy for COVID-19 is still urgently needed. In this study, we explored HPSE blockade with Roneparstat, a phase I clinically tested HPSE inhibitor, in the context of COVID-19 pathogenesis. Treatment with Roneparstat showed wide-spectrum anti-infection activities against SARS-CoV-2, HTLV-1, and HIV-1 in vitro. In addition, HPSE blockade with Roneparstat significantly attenuated SARS-CoV-2 S1 protein-induced inflammatory cytokine release from human macrophages through disruption of NF-κB signaling. Together, this study provides a proof of principle for the use of Roneparstat as a dual-targeting therapy for COVID-19 to decrease viral infection and dampen the proinflammatory immune response mediated by macrophages.


Assuntos
Tratamento Farmacológico da COVID-19 , Heparina/análogos & derivados , Linhagem Celular , Citocinas/metabolismo , Fenofibrato , Técnicas de Silenciamento de Genes , Glucuronidase/genética , Glucuronidase/metabolismo , Heparina/uso terapêutico , Humanos , Imunidade/efeitos dos fármacos , Inflamação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , NF-kappa B , SARS-CoV-2
4.
Pulm Pharmacol Ther ; 71: 102096, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34740750

RESUMO

The present study aimed to investigate the effects of PCI-34051-induced human bronchial epithelial cells (HBECs)-derived exosomes (PCI-Exo) on human bronchial smooth muscle cells (HBSMCs) and the key exosomal miRNAs involved in this process. Blank exosomes (Exo) and PCI-Exo were extracted from HBECs treated with PBS and PCI-34051, respectively. RNA-sequencing was performed to uncover the miRNA expression profile affected by PCI-Exo. The MTT, flow cytometry and TUNEL assays were performed to reveal the effect of PCI-34051 and PCI-Exo on the proliferation and apoptosis of HBSMCs. Western blotting and qRT-PCR were used for detecting protein and mRNA expression. A total of 25 exosomal miRNAs consisted of 17 down-regulated and eight up-regulated miRNAs were differentially expressed among PCI-Exo and Exo. Target genes of the exosomal miRNAs were mainly associated with signal transduction, cell adhesion, microRNAs in cancer, and ECM receptor interaction. miR-381-3p was identified as the most significant upregulated differential miRNA in PCI-Exo after qRT-PCR validation and could be transferred to HBSMCs by PCI-Exo. PCI-Exo treatment inhibited the proliferation but induced the apoptosis of HBSMCs. TGFß3 was identified as a target gene of miR-381-3p which could directly bind to the 3'UTR of TGFß3 mRNA. After transfecting the miR-381-3p mimic into HBSMCs, the proliferation inhibition and apoptosis rate of HBSMCs was significantly increased, and siTGFß3 transfection showed similar effects. Moreover, miR-381-3p overexpression could not only decrease the expression of α-SMA, FN1 and collagen I but also increase that of E-cadherin in HBSMCs. Our findings suggested that PCI-Exo could hinder the proliferation and obviously induce the apoptosis of HBSMCs, and its mechanisms might partly be attributable to the reduction of TGFß3 level by up-regulating exosomal miR-381-3p expression. These results may be vital for the treatment of lung related-diseases, especially asthma.


Assuntos
Exossomos , MicroRNAs , Intervenção Coronária Percutânea , Apoptose , Proliferação de Células , Histona Desacetilases , Humanos , Ácidos Hidroxâmicos , Indóis , MicroRNAs/genética , Miócitos de Músculo Liso , Proteínas Repressoras , Fator de Crescimento Transformador beta3
5.
Respir Res ; 21(1): 62, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111211

RESUMO

BACKGROUND: This study was to investigate of the mechanism by which histone deacetylase (HDAC) 8 inhibitor ameliorated airway hyperresponsiveness (AHR) and allergic airway inflammation. METHODS: Mice were sensitized and then treated with budesonide (BUD) or PCI-34051 (PCI) prior to exposing to normal saline (NS) or ovalbumin (OVA). The raw264.7 cells were treated with interleukin (IL)-4 and PCI or shRNA alone. Repetitive measurements of enhanced pause (Penh) were executed by increasing concentrations of acetyl-ß-methacholine chloride (0 - 50 mg/ml). Cells in bronchoalveolar lavage fluid (BALF) and pathological changes of lungs were examined, respectively. The expression levels of HDAC8, Galecitn (Gal)-3, CD68, CD86, CD163, Arg1 and NOS2 in lungs were measured. Co-regulation of HDAC8 and Gal-3 proteins was observed by immunofluorescence staining and co-immunoprecipitation assay (Co-IP). RESULTS: Significant increases in Penh and IL-4 level were detected with a large inflammatory infiltrate, comprised predominantly of macrophages and eosinophils, into the BALF in OVA-exposed lungs. HDAC8, Gal-3, CD68, CD86, CD163, Arg1 and NOS2 proteins were over-expressed with the significant changes in the Arg1 and NOS2 mRNA levels in the lungs and the IL-4-treated cells. PCI intervention obviously reduced the counts of CD163+ cells. Furthermore, Gal-3 knockdown suppressed Arg1 expression in the cells. Immunofluorescence staining displayed simultaneous changes in HDAC8 and Gal-3 expression in the investigated samples. Treatment with PCI resulted in synchronous reduction of HDAC8 and Gal-3 expression in the Co-IP complexes. CONCLUSIONS: The HDAC8 inhibitor ameliorates AHR and airway inflammation in animal model of allergic asthma through reducing HDAC8-Gal-3 interaction and M2 macrophage polarization.


Assuntos
Hiper-Reatividade Brônquica/metabolismo , Polaridade Celular/fisiologia , Galectina 3/biossíntese , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Macrófagos/metabolismo , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Polaridade Celular/efeitos dos fármacos , Feminino , Galectina 3/antagonistas & inibidores , Ácidos Hidroxâmicos/uso terapêutico , Indóis/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Células RAW 264.7 , Distribuição Aleatória
6.
J Cell Physiol ; 234(5): 5842-5850, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29215731

RESUMO

This study was conducted to investigate whether eucalyptol plays a role in influencing bacterial growth in cigarette smoke-exposed lungs. Rats were exposed to air (control) and cigarette smoke (smoking) in the presence and absence of eucalyptol (260 mg/day). Morphological analysis of lung structures and status of airway mucous production were observed under microscope. Pathological changes of ciliated columnar epithelium in airways were examined using transmission electron microscopy. MUC5AC protein and messenger RNA (mRNA) expression in bronchoalveolar lavage fluid (BALF) and lungs were determined. Application of eucalyptol reduced pulmonary bullae formation and airway mucus overproduction in the smoke-exposed lungs. Treatment with eucalyptol attenuated ciliated cell damage in cigarette smoke-exposed lungs. Bacterial colonies of lungs were obviously lower in the eucalyptol-treated rats than that in the smoking rats (p < 0.01). Treatment with eucalyptol reduced the counts of bacterial colonization residing in the challenged lungs (p < 0.01). Application of eucalyptol not only decreased MUC5AC protein expression in BALF and tobacco-exposed lungs but also suppressed its mRNA expression in the lungs (all p < 0.05). Intervention of eucalyptol benefits elimination of bacterial organisms from tobacco-exposed lungs through attenuating ciliated cell damage and suppressing MUC5AC expression in the lungs.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cílios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Eucaliptol/farmacologia , Pulmão/efeitos dos fármacos , Mucina-5AC/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Bactérias/crescimento & desenvolvimento , Carga Bacteriana , Cílios/metabolismo , Cílios/microbiologia , Cílios/ultraestrutura , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Interações Hospedeiro-Patógeno , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/ultraestrutura , Masculino , Mucina-5AC/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Ratos Sprague-Dawley , Fumaça , Produtos do Tabaco
7.
Inflamm Res ; 65(12): 995-1008, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27565183

RESUMO

OBJECTIVE AND DESIGN: To investigate the therapeutic effects of various HDAC inhibitors on the development of chronic allergic airway disease in mice with airway inflammation, airway remodeling, and airway hyperresponsiveness. SUBJECTS: Wild-type BALB/C mice (N = 72). TREATMENT: Tubastatin A HCl [TSA, a selective histone deacetylase 6 (HDAC6) inhibitor], PCI-34051 (a selective HDAC8 inhibitor), and givinostat (a broad-spectrum HDAC inhibitor that inhibits class I and class II HDACs and several pro-inflammatory cytokines). METHODS: Mice were divided into six groups: control, asthma, dexamethasone (positive control), TSA, PCI-34051, and givinostat (n = 12 per group). Twenty-four hours after OVA nebulization, airway hyperresponsiveness, inflammation, and remodeling were assessed. RESULTS: The chronic asthma mouse model produced typical airway inflammation, airway remodeling, and airway hyperresponsiveness. Administration of PCI-34051 and dexamethasone reduced the eosinophilic inflammation and airway hyperresponsiveness in asthma to reduce the airway remodeling. Treatment with Tubastatin A HCl reduced airway inflammation and was associated with decreased IL-4, IL-5 and total inflammatory cell count, as well as goblet cell metaplasia and subepithelial fibrosis; however, this outcome was not as effective as that with dexamethasone. TGF-ß1 expression in the cytoplasm of airway epithelium of mice in the Tubastatin A HCl group was reduced and expression of α-SMA in the airway smooth muscle was also decreased. CONCLUSIONS: The results suggested that treatment with HDAC inhibitors can reduce airway inflammation, airway remodeling, and airway hyperresponsiveness in chronic allergic airway disease in mice.


Assuntos
Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Actinas/metabolismo , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Antiasmáticos/farmacologia , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator de Crescimento Transformador beta1/metabolismo
8.
Nanomedicine ; 12(1): 201-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26515754

RESUMO

Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvß3-Fum-PD NP). Dual anti-angiogenic therapy combining αvß3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvß3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvß3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvß3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvß3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvß3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvß3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Difosfonatos/administração & dosagem , Imidazóis/administração & dosagem , Integrina alfaVbeta3/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Linhagem Celular Tumoral , Difusão , Difosfonatos/química , Imidazóis/química , Masculino , Terapia de Alvo Molecular/métodos , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Pró-Fármacos/química , Coelhos , Resultado do Tratamento , Ácido Zoledrônico
9.
Adv Biol (Weinh) ; 8(3): e2300454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072634

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems are widely distributed adaptive immune systems found in prokaryotes. The process involves three main stages: adaptation, expression, and interference. While the adaptation stage has been extensively studied, there is still an incomplete understanding of the mechanisms underlying the capture, trimming, and integration of exogenous DNA. For instance, Cas4, a CRISPR-Cas protein with endonuclease activity, is responsible for selecting and processing protospacer adjacent motif (PAM) sequences. However, some CRISPR isoforms lack Cas4 activity, relying on other enzymes for adaptive immunity. Recently, Wang et al. presented a novel model of exogenous DNA processing in a type I-E CRISPR system lacking Cas4 in a Nature article. This model integrates protospacer processing into CRISPR arrays through fine-tuned synthases formed by DnaQ-like exonuclease (DEDDh) and Cas1-Cas2 complexes. Their study introduces a novel model, shedding new light on the evolution of CRISPR adaptive immunity. This perspective comprehensively examines the fundamental process of CRISPR adaptive immunity, detailing both the classical pathway mediated by Cas4 and the alternative pathway mediated by DEDDh. Furthermore, a thorough evaluation of Wang et al.'s work is conducted, highlighting its strengths, weaknesses, and existing research challenges.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/genética , DNA/metabolismo
10.
Gene ; 896: 148044, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042213

RESUMO

LncRNAs are RNA transcripts that exceed 200 nucleotides in length and do not encode proteins. LINC00319 is a type of lncRNA that is highly expressed in various cancers and is regulated by CCL18 and MYC. High levels of LINC00319 are associated with poorer prognosis and more malignant clinical features in cancer patients. LINC00319 can regulate the expression of downstream genes, including 2 protein-coding genes and 11 miRNAs. It participates in controlling three signaling pathways and various cellular behaviors. LINC00319 and its downstream genes are potential targets for cancer therapy and are associated with common cancer treatments. This article reviews the abnormal expression of LINC00319 in human cancers and related molecular mechanisms, providing clues for further diagnosis and treatment.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , MicroRNAs/genética , Regulação para Cima , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/terapia
11.
Cancer Gene Ther ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858534

RESUMO

RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.

12.
Hum Cell ; 37(1): 167-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995050

RESUMO

LINC00941, also known as lncRNA-MUF, is an intergenic non-coding RNA located on chromosome 12p11.21. It actively participates in a complex competing endogenous RNA network, regulating the expression of microRNA and its downstream proteins. Through transcriptional and post-transcriptional regulation, LINC00941 plays a vital role in multiple signaling pathways, influencing cell behaviors such as tumor cell proliferation, epithelial-mesenchymal transition, migration, and invasion. Noteworthy is its consistently high expression in various tumor types, closely correlating with clinicopathological features and cancer prognoses. Elevated LINC00941 levels are associated with adverse clinical outcomes, including increased tumor size, extensive lymphatic metastasis, and distant metastasis, leading to poorer survival rates across different cancers. Additionally, LINC00941 and its associated genes are linked to various targeted drugs available in the market. In this comprehensive review, we systematically summarize existing studies, detailing LINC00941's differential expression, clinicopathological and prognostic implications, regulatory mechanisms, and associated therapeutic drugs. Our analysis includes relevant charts and incorporates bioinformatics analyses to verify LINC00941's differential expression in pan-cancer and explore potential transcriptional regulation patterns of downstream targets. This work not only establishes a robust data foundation but also guides future research directions. Given its potential as a significant cancer biomarker and therapeutic target, further investigation into LINC00941's differential expression and regulatory mechanisms is essential.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Metástase Linfática , Transdução de Sinais , RNA Mensageiro/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
13.
Cancer Pathog Ther ; 2(3): 142-154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027151

RESUMO

Micro ribonucleic acids (miRNAs) are a highly conserved class of single-stranded non-coding RNAs. Within the miR-545/374a cluster, miR-545 resides in the intron of the long non-coding RNA (lncRNA) FTX on Xq13.2. The precursor form, pre-miR-545, is cleaved to generate two mature miRNAs, miR-545-3p and miR-545-5p. Remarkably, these two miRNAs exhibit distinct aberrant expression patterns in different cancers; however, their expression in colorectal cancer remains controversial. Notably, miR-545-3p is affected by 15 circular RNAs (circRNAs) and 10 long non-coding RNAs (lncRNAs), and it targets 27 protein-coding genes (PCGs) that participate in the regulation of four signaling pathways. In contrast, miR-545-5p is regulated by one circRNA and five lncRNAs, it targets six PCGs and contributes to the regulation of one signaling pathway. Both miR-545-3p and miR-545-5p affect crucial cellular behaviors, including cell cycle, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and migration. Although low miR-545-3p expression is associated with poor prognosis in three cancer types, studies on miR-545-5p are yet to be reported. miR-545-3p operates within a diverse range of regulatory networks, thereby augmenting the efficacy of cancer chemotherapy, radiotherapy, and immunotherapy. Conversely, miR-545-5p enhances immunotherapy efficacy by inhibiting T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. In summary, miR-545 holds immense potential as a cancer biomarker and therapeutic target. The aberrant expression and regulatory mechanisms of miR-545 in cancer warrant further investigation.

14.
Res Sq ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38558990

RESUMO

Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-ß) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.

15.
J Natl Cancer Cent ; 3(4): 306-309, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39036664

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) stands as a profoundly heterogeneous and aggressive malignancy, manifesting a discouragingly limited response to conventional therapeutic interventions. Within the intricate tapestry of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) emerge as pivotal constituents, wielding the capacity to propel the malignant attributes of neoplastic cells while bolstering their deftness in thwarting treatments. The rapid evolution of nanomedicinal technologies ushers in fresh avenues for therapeutic paradigms meticulously honed to target CAFs. Notably, a recent proposition by Yuan et al. introduces a PDAC treatment strategy metaphorically akin to "shooting fish in a barrel." By adeptly capitalizing on the spatial distribution of the CAF barricade encircling the tumor, this innovative approach orchestrates a metamorphosis of CAFs, transitioning them from impediments to drug delivery into reservoirs of therapeutic agents. The resultant outcome, an augmentation of chemotherapy and immunotherapy efficacy, attests to the transformative potential of this concept. The study not only bequeaths novel insights and methodologies to surmount barriers in drug delivery for tumor treatment but also holds promise in elevating the precision, efficacy, and safety of tailored therapeutic regimens. Within this discourse, we meticulously evaluate Yuan et al.'s research, scrutinizing its merits and limitations, and cast a forward-looking gaze upon the formulation, validation of efficacy, and clinical translation of nanomedicines targeting CAFs.

16.
Front Immunol ; 14: 1034755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845128

RESUMO

Background: Bronchial asthma (asthma) is a chronic inflammatory disease of the airways, involving a variety of cells and cellular components, that manifests clinically as recurrent episodes of wheezing, shortness of breath, with or without chest tightness or cough, airway hyperresponsiveness, and variable airflow limitation. The number of people with asthma has reached 358 million worldwide and asthma causes huge economic loss. However, there is a subset of patients who are not sensitive to existing drugs and the existing drugs have many adverse effects. Therefore, it's important to find new drugs for asthma patients. Methods: Publications related to biologics in asthma published from 2000 to 2022 were retrieved from Web of Science Core Collection. The search strategies were as follows: topic: TS=(biologic* OR "biologic* product*" OR "biologic* therap*" OR biotherapy* OR "biologic* agent*" OR Benralizumab OR "MEDI-563" OR Fasenra OR "BIW-8405" OR Dupilumab OR SAR231893 OR "SAR-231893" OR Dupixent OR REGN668 OR "REGN-668" OR Mepolizumab OR Bosatria OR "SB-240563" OR SB240563 OR Nucala OR Omalizumab OR Xolair OR Reslizumab OR "SCH-55700" OR SCH55700 OR "CEP-38072" OR CEP38072 OR Cinqair OR "DCP-835" OR DCP835 OR Tezspire OR "tezepelumab-ekko" OR "AMG-157" OR tezspire OR "MEDI-9929" OR "MEDI-19929" OR MEDI9929 OR Itepekimab OR "REGN-3500"OR REGN3500 OR "SAR-440340"OR SAR440340 OR Tralokinumab OR "CAT-354" OR Anrukinzumab OR "IMA-638" OR Lebrikizumab OR "RO-5490255"OR "RG-3637"OR "TNX-650"OR "MILR1444A"OR "MILR-1444A"OR"PRO301444"OR "PRO-301444"OR Pitrakinra OR altrakincept OR "AMG-317"OR"AMG317" OR Etokimab OR Pascolizumab OR "IMA-026"OR Enokizumab OR "MEDI-528"OR "7F3COM-2H2" OR 7F3COM2H2 OR Brodalumab OR "KHK-4827" OR "KHK4827"OR "AMG-827"OR Siliq OR Ligelizumab OR "QGE-031" OR QGE031 OR Quilizumab OR Talizumab OR "TNX-901" OR TNX901 OR Infliximab OR Etanercept OR "PRS-060") AND TS=asthma*. The document type was set to articles and review articles and the language restriction was set to English. Three different analysis tools including one online platform, VOS viewer1.6.18, and CiteSpace V 6.1.R1 software were used to conduct this bibliometric study. Results: This bibliometric study included 1,267 English papers published in 244 journals from 2,012 institutions in 69 countries/regions. Omalizumab, benralizumab, mepolizumab, and tezepelumab in relation to asthma were the research hotspots in the field. Conclusion: This study systematically uncovers a holistic picture of existing literature related to the biologic treatment of asthma over the past 20 years. We consulted scholars in order to understand key information in this field from the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.


Assuntos
Asma , Produtos Biológicos , Humanos , Omalizumab/uso terapêutico , Asma/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Bibliometria
17.
Cancer Innov ; 2(6): 448-462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125763

RESUMO

Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding transcripts that are longer than 200 nucleotides. LINC00355 is a lncRNA located on chromosome 13q21.31 and is consistently upregulated in various cancers. It regulates the expression of downstream genes at both transcriptional and posttranscriptional levels, including eight microRNAs (miR-15a-5p, miR-34b-5p, miR-424-5p, miR-1225, miR-217-5p, miR-6777-3p, miR-195, and miR-466) and three protein-coding genes (ITGA2, RAD18, and UBE3C). LINC00355 plays a role in regulating various biological processes such as cell cycle progression, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and metastasis of cancer cells. It is involved in the regulation of the Wnt/ß-catenin signaling pathway and p53 signaling pathway. Upregulation of LINC00355 has been identified as a high-risk factor in cancer patients and its increased expression is associated with poorer overall survival, recurrence-free survival, and disease-free survival. LINC00355 upregulation has been linked to several unfavorable clinical characteristics, including advanced tumor node metastasis and World Health Organization stages, reduced Karnofsky Performance Scale scores, increased tumor size, greater depth of invasion, and more extensive lymph node metastasis. LINC00355 induces chemotherapy resistance in cancer cells by regulating five downstream genes, namely HMGA2, ABCB1, ITGA2, WNT10B, and CCNE1 genes. In summary, LINC00355 is a potential oncogene with great potential as a diagnostic marker and therapeutic target for cancer.

18.
PLoS One ; 18(12): e0293700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38117806

RESUMO

BACKGROUND: Conjugation of transferrin (Tf) to imaging or nanotherapeutic agents is a promising strategy to target breast cancer. Since the efficacy of these biomaterials often depends on the overexpression of the targeted receptor, we set out to survey expression of transferrin receptor (TfR) in primary and metastatic breast cancer samples, including metastases and relapse, and investigate its modulation in experimental models. METHODS: Gene expression was investigated by datamining in twelve publicly-available datasets. Dedicated Tissue microarrays (TMAs) were generated to evaluate matched primary and bone metastases as well as and pre and post chemotherapy tumors from the same patient. TMA were stained with the FDA-approved MRQ-48 antibody against TfR and graded by staining intensity (H-score). Patient-derived xenografts (PDX) and isogenic metastatic mouse models were used to study in vivo TfR expression and uptake of transferrin. RESULTS: TFRC gene and protein expression were high in breast cancer of all subtypes and stages, and in 60-85% of bone metastases. TfR was detectable after neoadjuvant chemotherapy, albeit with some variability. Fluorophore-conjugated transferrin iron chelator deferoxamine (DFO) enhanced TfR uptake in human breast cancer cells in vitro and proved transferrin localization at metastatic sites and correlation of tumor burden relative to untreated tumor mice. CONCLUSIONS: TfR is expressed in breast cancer, primary, metastatic, and after neoadjuvant chemotherapy. Variability in expression of TfR suggests that evaluation of the expression of TfR in individual patients could identify the best candidates for targeting. Further, systemic iron chelation with DFO may upregulate receptor expression and improve uptake of therapeutics or tracers that use transferrin as a homing ligand.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quelantes , Expressão Gênica , Terapia de Alvo Molecular , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
19.
Cancer Discov ; 13(6): 1454-1477, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36883955

RESUMO

Metastatic breast cancer is an intractable disease that responds poorly to immunotherapy. We show that p38MAPKα inhibition (p38i) limits tumor growth by reprogramming the metastatic tumor microenvironment in a CD4+ T cell-, IFNγ-, and macrophage-dependent manner. To identify targets that further increased p38i efficacy, we utilized a stromal labeling approach and single-cell RNA sequencing. Thus, we combined p38i and an OX40 agonist that synergistically reduced metastatic growth and increased overall survival. Intriguingly, patients with a p38i metastatic stromal signature had better overall survival that was further improved by the presence of an increased mutational load, leading us to ask if our approach would be effective in antigenic breast cancer. The combination of p38i, anti-OX40, and cytotoxic T-cell engagement cured mice of metastatic disease and produced long-term immunologic memory. Our findings demonstrate that a detailed understanding of the stromal compartment can be used to design effective antimetastatic therapies. SIGNIFICANCE: Immunotherapy is rarely effective in breast cancer. We dissected the metastatic tumor stroma, which revealed a novel therapeutic approach that targets the stromal p38MAPK pathway and creates an opportunity to unleash an immunologic response. Our work underscores the importance of understanding the tumor stromal compartment in therapeutic design. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Neoplasias , Camundongos , Animais , Linfócitos T Citotóxicos , Linfócitos T CD4-Positivos , Imunoterapia , Macrófagos , Microambiente Tumoral , Linhagem Celular Tumoral
20.
Eur J Immunol ; 41(4): 936-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21381020

RESUMO

Accumulating evidence suggests that Th17 cells and Tregs may exhibit development plasticity and that CD4(+) Tregs can differentiate into IL-17-producing T cells; however, whether Th17 cells can reciprocally convert into Tregs has not been described. In this study, we generated Th17 clones from tumor-infiltrating T lymphocytes (TILs). We showed that Th17 clones generated from TILs can differentiate into IFN-γ-producing and FOXP3(+) cells after in vitro stimulation with OKT3 and allogeneic peripheral blood mononuclear cells. We further demonstrated that T-cell receptor (TCR) engagement was responsible for this conversion, and that this differentiation was due to the epigenetic modification and reprogramming of gene expression profiles, including lineage-specific transcriptional factor and cytokine genes. In addition to expressing IFN-γ and FOXP3, we showed that these differentiated Th17 clones mediated potent suppressive function after repetitive stimulation with OKT3, suggesting that these Th17 clones had differentiated into functional Tregs. We further demonstrated that the Th17-derived Tregs, unlike naturally occurring CD4(+) CD25(+) Tregs, did not reconvert back into Th17 cells even under Th17-biasing cytokine conditions. These results provide the critical evidence that human tumor-infiltrating Th17 cells can differentiate into Tregs and indicate a substantial developmental plasticity of Th17 cells.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/imunologia , Interferon gama/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células Th17/imunologia , Linhagem da Célula , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Interferon gama/biossíntese , Linfócitos do Interstício Tumoral/citologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th17/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa