Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(9): 6859-6864, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787160

RESUMO

By virtue of multitunable spin structures upon designing the π-electron topologies, phenalenyl-based nanographenes are of substantial interest in fundamental science and for potential applications in spintronics. Heptauthrene, as one of the well-known phenalenyl diradicals, is composed of one benzene-fused bisphenalenyls in mirror symmetry and expected to have a triplet ground state. However, the synthesis of unsubstituted heptauthrene remains very challenging due to the high reactivity of triplet diradicals. Here, we report a combined in-solution and on-surface synthesis of unsubstituted heptauthrene, whose chemical structure is characterized through bond-resolved atomic force microscopy. Combined with mean-field Hubbard model calculations, its triplet ground state is unambiguously confirmed by the underscreened Kondo resonance in response to the magnetic field, as well as the engineered spin-state switching upon extra hydrogen atom addition and dissociation on the radical site. Our results provide access to phenalenyl-based nanographenes with high-spin ground state, potentially useful in constructing high-spin networks.

2.
Nano Lett ; 18(9): 5744-5751, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30111118

RESUMO

Zigzag edges of graphene nanoribbons, which are predicted to host spin-polarized electronic states, hold great promise for future spintronic device applications. The ability to precisely engineer the zigzag edge state is of crucial importance for realizing its full potential functionalities in nanotechnology. By combining scanning tunneling microscopy and atomic force microscopy, we demonstrate the zigzag edge states have energy splitting upon fusing manganese the phthalocyanine molecule with the short armchair graphene nanoribbon termini. Moreover, the edge state splitting can be reversibly switched by adsorption and desorption of a hydrogen atom on the magnetic core of manganese phthalocyanine. These observations can be explained by tuning the zigzag edge local doping through the charge transfer process, which provides a new route to functionalize graphene-based molecular devices.

3.
Int J Mol Sci ; 20(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022934

RESUMO

Chiral recognition among helical molecules is of essential importance in many chemical and biochemical processes. The complexity necessitates investigating manageable model systems for unveiling the fundamental principles of chiral recognition at the molecular level. Here, we reported chiral recognition in the self-assembly of enantiopure and racemic hexahelicene on a Au(111) surface. Combing scanning tunneling microscopy (STM) and atomic force microscopy (AFM) measurements, the asymmetric heterochiral trimers were observed as a new type of building block in racemic helicene self-assembly on Au(111). The intermolecular recognition of the heterochiral trimer was investigated upon manual separation so that the absolute configuration of each helicene molecule was unambiguously determined one by one, thus confirming that the trimer was "2+1" in handedness. These heterochiral trimers showed strong stability upon different coverages, which was also supported by theoretical calculations. Our results provide valuable insights for understanding the intermolecular recognition of helical molecules.


Assuntos
Compostos Policíclicos/química , Dimerização , Ouro/química , Microscopia de Força Atômica , Microscopia de Tunelamento , Modelos Moleculares , Estereoisomerismo , Propriedades de Superfície
4.
Nat Commun ; 14(1): 4802, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558678

RESUMO

Open-shell nanographenes appear as promising candidates for future applications in spintronics and quantum technologies. A critical aspect to realize this potential is to design and control the magnetic exchange. Here, we reveal the effects of frontier orbital symmetries on the magnetic coupling in diradical nanographenes through scanning probe microscope measurements and different levels of theoretical calculations. In these open-shell nanographenes, the exchange energy exhibits a remarkable variation between 20 and 160 meV. Theoretical calculations reveal that frontier orbital symmetries play a key role in affecting the magnetic coupling on such a large scale. Moreover, a triradical nanographene is demonstrated for investigating the magnetic interaction among three unpaired electrons with unequal magnetic exchange, in agreement with Heisenberg spin model calculations. Our results provide insights into both theoretical design and experimental realization of nanographene materials with different exchange interactions through tuning the orbital symmetry, potentially useful for realizing magnetically operable graphene-based nanomaterials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa