Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37795677

RESUMO

Plant inflorescence architecture is determined by inflorescence meristem (IM) activity and controlled by genetic mechanisms associated with environmental factors. In Arabidopsis (Arabidopsis thaliana), TERMINAL FLOWER1 (TFL1) is expressed in the IM and is required to maintain indeterminate growth, whereas LEAFY (LFY) is expressed in the floral meristems (FMs) formed at the periphery of the IM and is required to activate determinate floral development. Here, we address how Arabidopsis indeterminate inflorescence growth is determined. We show that the 26S proteasome subunit REGULATORY PARTICLE AAA-ATPASE 2a (RPT2a) is required to maintain the indeterminate inflorescence architecture in Arabidopsis. rpt2a mutants display reduced TFL1 expression levels and ectopic LFY expression in the IM and develop a determinate zigzag-shaped inflorescence. We further found that RPT2a promotes DNA METHYLTRANSFERASE1 degradation, leading to DNA hypomethylation upstream of TFL1 and high TFL1 expression levels in the wild-type IM. Overall, our work reveals that proteolytic input into the epigenetic regulation of TFL1 expression directs inflorescence architecture in Arabidopsis, adding an additional layer to stem cell regulation.

2.
New Phytol ; 242(3): 1098-1112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515249

RESUMO

The potential for totipotency exists in all plant cells; however, the underlying mechanisms remain largely unknown. Earlier findings have revealed that the overexpression of LEAFY COTYLEDON 2 (LEC2) can directly trigger the formation of somatic embryos on the cotyledons of Arabidopsis. Furthermore, cotyledon cells that overexpress LEC2 accumulate significant lipid reserves typically found in seeds. The precise mechanisms and functions governing lipid accumulation in this process remain unexplored. In this study, we demonstrate that WRINKLED1 (WRI1), the key regulator of lipid biosynthesis, is essential for somatic embryo formation, suggesting that WRI1-mediated lipid biosynthesis plays a crucial role in the transition from vegetative to embryonic development. Our findings indicate a direct interaction between WRI1 and LEC2, which enhances the enrichment of LEC2 at downstream target genes and stimulates their induction. Besides, our data suggest that WRI1 forms a complex with LEC1, LEC2, and FUSCA3 (FUS3) to facilitate the accumulation of auxin and lipid for the somatic embryo induction, through strengthening the activation of YUCCA4 (YUC4) and OLEOSIN3 (OLE3) genes. Our results uncover a regulatory module controlled by WRI1, crucial for somatic embryogenesis. These findings provide valuable insights into our understanding of plant cell totipotency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Lipídeos , Sementes/genética , Fatores de Transcrição/metabolismo
3.
Plant Cell ; 33(6): 1907-1926, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33730150

RESUMO

Seed size is a major factor determining crop yields that is controlled through the coordinated development of maternal and zygotic tissues. Here, we identified Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 (MEE45) as a B3 transcription factor that controls cell proliferation and maternally regulates seed size through its transcriptional activation of AINTEGUMENTA (ANT) and its downstream control of auxin biosynthesis in the ovule integument. After characterizing reduced seed and organ size phenotypes in mee45 mutants and finding that overexpression of MEE45 causes oversized seeds, we discovered that the MEE45 protein can bind to the promoter region of the ANT locus and positively regulate its transcription. ANT in-turn activates the expression of auxin biosynthetic genes (e.g. YUCCA4) in the ovule integument. Our results thus illustrate mechanisms underlying maternal tissue-mediated regulation of seed size and suggest that MEE45 and its downstream components can be harnessed to develop higher-yielding crop varieties.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proliferação de Células/genética , Regulação da Expressão Gênica de Plantas , Herança Materna/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Tamanho do Órgão , Óvulo Vegetal/citologia , Óvulo Vegetal/genética , Células Vegetais , Plantas Geneticamente Modificadas , Sementes/genética , Fatores de Transcrição/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(36): 22561-22571, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839309

RESUMO

In the shoot meristem, both WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM), two transcription factors with overlapping spatiotemporal expression patterns, are essential for maintaining stem cells in an undifferentiated state. Despite their importance, it remains unclear how these two pathways are integrated to coordinate stem cell development. Here, we show that the WUS and STM pathways in Arabidopsis thaliana converge through direct interaction between the WUS and STM proteins. STM binds to the promoter of CLAVATA3 (CLV3) and enhances the binding of WUS to the same promoter through the WUS-STM interaction. Both the heterodimerization and simultaneous binding of WUS and STM at two sites on the CLV3 promoter are required to regulate CLV3 expression, which in turn maintains a constant number of stem cells. Furthermore, the expression of STM depends on WUS, and this WUS-activated STM expression enhances the WUS-mediated stem cell activity. Our data provide a framework for understanding how spatial expression patterns within the shoot meristem are translated into regulatory units of stem cell homeostasis.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Meristema/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/metabolismo , Ligação Proteica , Células-Tronco/citologia , Células-Tronco/metabolismo
5.
J Integr Plant Biol ; 63(1): 228-243, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32437079

RESUMO

Plant cells have a powerful capacity in their propagation to adapt to environmental change, given that a single plant cell can give rise to a whole plant via somatic embryogenesis without the need for fertilization. The reprogramming of somatic cells into totipotent cells is a critical step in somatic embryogenesis. This process can be induced by stimuli such as plant hormones, transcriptional regulators and stress. Here, we review current knowledge on how the identity of totipotent cells is determined and the stimuli required for reprogramming of somatic cells into totipotent cells. We highlight key molecular regulators and associated networks that control cell fate transition from somatic to totipotent cells. Finally, we pose several outstanding questions that should be addressed to enhance our understanding of the mechanisms underlying plant cell totipotency.


Assuntos
Reprogramação Celular/fisiologia , Células Vegetais/metabolismo , Reprogramação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Técnicas de Embriogênese Somática de Plantas
6.
Plant Cell Rep ; 39(4): 543-552, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32025802

RESUMO

KEY MESSAGE: BIG regulates the shoot stem cell population. The shoot apical meristem (SAM) contains a population of self-renewing cells, and provides daughter cells for initiation and development of aerial parts of plants. However, the underlying mechanisms of SAM size regulation remain largely unclear. Here, we identified a mutant that displayed a large SAM, designated big-shoot meristem (big-m), in Arabidopsis thaliana. The phenotype of big-m is caused by a new T-DNA insertion allele of BIG, causing a loss of function. The big-m mutant had more stem cells in the SAM than in the wild type. Expression of WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM) was promoted in big-m compared with the wild type, showing that BIG functions upstream of WUS and STM. Therefore, BIG is an important regulator of the stem cell population in the SAM. Furthermore, genetic analysis indicated that BIG acts synergistically with PIN-FORMED1 (PIN1) in controlling SAM size. Our results suggest that BIG plays an important role in controlling Arabidopsis thaliana SAM growth via PIN1-mediated auxin homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Meristema/citologia , Meristema/genética , Brotos de Planta/citologia , Brotos de Planta/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutagênese Insercional , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
7.
J Integr Plant Biol ; 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289329

RESUMO

In eukaryotes, N-ethylmaleimide-sensitive factor (NSF) is a conserved AAA+ ATPase and a key component of the membrane trafficking machinery that promotes the fusion of secretory vesicles with target membranes. Here, we demonstrate that the Arabidopsis thaliana genome contains a single copy of NSF, AtNSF, which plays an essential role in the regulation of leaf serration. The AtNSF knock-down mutant, atnsf-1, exhibited more serrations in the leaf margin. Moreover, polar localization of the PIN-FORMED1 (PIN1) auxin efflux transporter was diffuse around the margins of atnsf-1 leaves and root growth was inhibited in the atnsf-1 mutant. More PIN1-GFP accumulated in the intracellular compartments of atnsf-1 plants, suggesting that AtNSF is required for intracellular trafficking of PIN between the endosome and plasma membrane. Furthermore, the serration phenotype was suppressed in the atnsf-1 pin1-8 double mutant, suggesting that AtNSF is required for PIN1-mediated polar auxin transport to regulate leaf serration. The CUP-SHAPED COTYLEDON2 (CUC2) transcription factor gene is up-regulated in atnsf-1 plants and the cuc2-3 single mutant exhibits smooth leaf margins, demonstrating that AtNSF also functions in the CUC2 pathway. Our results reveal that AtNSF regulates the PIN1-generated auxin maxima with a CUC2-mediated feedback loop to control leaf serration. This article is protected by copyright. All rights reserved.

8.
New Phytol ; 213(4): 1740-1754, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27878992

RESUMO

Lateral root (LR) development is a post-embryonic organogenesis event that gives rise to most of the underground parts of higher plants. Auxin promotes LR formation, but the molecular mechanisms involved in this process are still not well understood. We analyzed LR formation induced by FUSCA3 (FUS3), a B3 domain transcription factor, which may function by promoting auxin biosynthesis during this process. We identified FUS3-interacting proteins that function in LR formation. In addition, we searched for the common targets of both FUS3 and its interacting protein. The role of their interactions in regulating auxin accumulation and LR initiation was examined. We identified LEAFY COTYLEDON2 (LEC2) as an interacting factor of FUS3, and demonstrated that these two homologous B3 transcription factors interact to bind to the auxin biosynthesis gene YUCCA4 (YUC4) and synergistically activate its transcription during LR formation. Furthermore, FUS3 expression is activated by LEC2 in LR initiation. The observations indicate that the FUS3-LEC2 complex functions as a key regulator in auxin-regulated LR formation. The results of this study provide new information for understanding the mechanisms of LR regulation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Oxigenases de Função Mista/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/metabolismo , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Fatores de Transcrição/genética
9.
Plant Physiol ; 161(1): 240-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124326

RESUMO

De novo organ regeneration is an excellent biological system for the study of fundamental questions regarding stem cell initiation, cell fate determination, and hormone signaling. Despite the general belief that auxin and cytokinin responses interact to regulate de novo organ regeneration, the molecular mechanisms underlying such a cross talk are little understood. Here, we show that spatiotemporal biosynthesis and polar transport resulted in local auxin distribution in Arabidopsis (Arabidopsis thaliana), which in turn determined the cytokinin response during de novo shoot regeneration. Genetic and pharmacological interference of auxin distribution disrupted the cytokinin response and ATP/ADP ISOPENTENYLTRANSFERASE5 (AtIPT5) expression, affecting stem cell initiation and meristem formation. Transcriptomic data suggested that AUXIN RESPONSE FACTOR3 (ARF3) mediated the auxin response during de novo organ regeneration. Indeed, mutations in ARF3 caused ectopic cytokinin biosynthesis via the misexpression of AtIPT5, and this disrupted organ regeneration. We further showed that ARF3 directly bound to the promoter of AtIPT5 and negatively regulated AtIPT5 expression. The results from this study thus revealed an auxin-cytokinin cross talk mechanism involving distinct intermediate signaling components required for de novo stem cell initiation and shed new light on the mechanisms of organogenesis in planta.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Citocininas/biossíntese , Proteínas de Ligação a DNA/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Proteínas Nucleares/genética , Células Vegetais/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Técnicas do Sistema de Duplo-Híbrido
10.
PLoS Genet ; 7(8): e1002243, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876682

RESUMO

Plants have a profound capacity to regenerate organs from differentiated somatic tissues, based on which propagating plants in vitro was made possible. Beside its use in biotechnology, in vitro shoot regeneration is also an important system to study de novo organogenesis. Phytohormones and transcription factor WUSCHEL (WUS) play critical roles in this process but whether and how epigenetic modifications are involved is unknown. Here, we report that epigenetic marks of DNA methylation and histone modifications regulate de novo shoot regeneration of Arabidopsis through modulating WUS expression and auxin signaling. First, functional loss of key epigenetic genes-including METHYLTRANSFERASE1 (MET1) encoding for DNA methyltransferase, KRYPTONITE (KYP) for the histone 3 lysine 9 (H3K9) methyltransferase, JMJ14 for the histone 3 lysine 4 (H3K4) demethylase, and HAC1 for the histone acetyltransferase-resulted in altered WUS expression and developmental rates of regenerated shoots in vitro. Second, we showed that regulatory regions of WUS were developmentally regulated by both DNA methylation and histone modifications through bisulfite sequencing and chromatin immunoprecipitation. Third, DNA methylation in the regulatory regions of WUS was lost in the met1 mutant, thus leading to increased WUS expression and its localization. Fourth, we did a genome-wide transcriptional analysis and found out that some of differentially expressed genes between wild type and met1 were involved in signal transduction of the phytohormone auxin. We verified that the increased expression of AUXIN RESPONSE FACTOR3 (ARF3) in met1 indeed was due to DNA demethylation, suggesting DNA methylation regulates de novo shoot regeneration by modulating auxin signaling. We propose that DNA methylation and histone modifications regulate de novo shoot regeneration by modulating WUS expression and auxin signaling. The study demonstrates that, although molecular components involved in organogenesis are divergently evolved in plants and animals, epigenetic modifications play an evolutionarily convergent role in this process.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Ácidos Indolacéticos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Transdução de Sinais
11.
Sci China Life Sci ; 67(7): 1338-1367, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833085

RESUMO

Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.


Assuntos
Arabidopsis , Biotecnologia , Regeneração , Regeneração/genética , Regeneração/fisiologia , Biotecnologia/métodos , Arabidopsis/genética , Arabidopsis/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Epigênese Genética , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo
12.
aBIOTECH ; 4(4): 386-388, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106431

RESUMO

The genetic transformation plays an important role in plant gene functional analysis and its genetic improvement. However, only a limited number of maize germplasms can be routinely transformed. The maize gene Wuschel-like homeobox protein 2a (Wox2a) was shown to play a crucial role in promoting the formation of embryonic cells and enhancing the efficiency of genetic transformation in maize. This commentary discusses the mechanism by which the Wox2a gene contributes to the variation in embryogenic tissue culture response among different maize inbred lines. In addition, the frequency and intensity of Wox2a or Wus2/Bbm vector-induced somatic embryogenesis was also discussed. The application of Wox2a in transformation of recalcitrant maize genotypes could well accelerate the development of maize genetic improvement.

13.
Cell Rep ; 42(7): 112729, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405922

RESUMO

Protein phosphorylation modification is crucial for signaling transduction in plant development and environmental adaptation. By precisely phosphorylating crucial components in signaling cascades, plants can switch on and off the specific signaling pathways needed for growth or defense. Here, we have summarized recent findings of key phosphorylation events in typical hormone signaling and stress responses. More interestingly, distinct phosphorylation patterns on proteins result in diverse biological functions of these proteins. Thus, we have also highlighted latest findings that show how the different phosphosites of a protein, also named phosphocodes, determine the specificity of downstream signaling in both plant development and stress responses.


Assuntos
Plantas , Transdução de Sinais , Fosforilação/fisiologia , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo
14.
Front Cell Dev Biol ; 11: 1097780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36727112

RESUMO

Somatic cell reprogramming (SCR) is the conversion of differentiated somatic cells into totipotent or pluripotent cells through a variety of methods. Somatic cell reprogramming also provides a platform to investigate the role of chromatin-based factors in establishing and maintaining totipotency or pluripotency, since high expression of totipotency- or pluripotency-related genes usually require an active chromatin state. Several studies in plants or mammals have recently shed light on the molecular mechanisms by which epigenetic modifications regulate the expression of totipotency or pluripotency genes by altering their chromatin states. In this review, we present a comprehensive overview of the dynamic changes in epigenetic modifications and chromatin states during reprogramming from somatic cells to totipotent or pluripotent cells. In addition, we illustrate the potential role of DNA methylation, histone modifications, histone variants, and chromatin remodeling during somatic cell reprogramming, which will pave the way to developing reliable strategies for efficient cellular reprogramming.

15.
Plant Commun ; : 100738, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897039

RESUMO

In the realm of genetically transformed crops, the process of plant regeneration holds utmost significance. However, the low regeneration efficiency of several wheat varieties currently restricts the use of genetic transformation for gene functional analysis and improved crop production. This research explores overexpression of TaLAX PANICLE1 (TaLAX1), which markedly enhances regeneration efficiency, thereby boosting genetic transformation and genome editing in wheat. Particularly noteworthy is the substantial increase in regeneration efficiency of common wheat varieties previously regarded as recalcitrant to genetic transformation. Our study shows that increased expression of TaGROWTH-REGULATING FACTOR (TaGRF) genes, alongside that of their co-factor, TaGRF-INTERACTING FACTOR 1 (TaGIF1), enhances cytokinin accumulation and auxin response, which may play pivotal roles in the improved regeneration and transformation of TaLAX1-overexpressing wheat plants. Overexpression of TaLAX1 homologs also significantly increases the regeneration efficiency of maize and soybean, suggesting that both monocot and dicot crops can benefit from this enhancement. Our findings shed light on a gene that enhances wheat genetic transformation and elucidate molecular mechanisms that potentially underlie wheat regeneration.

16.
Life (Basel) ; 12(5)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35629367

RESUMO

Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.

17.
Front Plant Sci ; 13: 864987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371148

RESUMO

In plants, embryogenesis and reproduction are not strictly dependent on fertilization. Several species can produce embryos in seeds asexually, a process known as apomixis. Apomixis is defined as clonal asexual reproduction through seeds, whereby the progeny is identical to the maternal genotype, and provides valuable opportunities for developing superior cultivars, as its induction in agricultural crops can facilitate the development and maintenance of elite hybrid genotypes. In this review, we summarize the current understanding of apomixis and highlight the successful introduction of apomixis methods into sexual crops. In addition, we discuss several genes whose overexpression can induce somatic embryogenesis as candidate genes to induce parthenogenesis, a unique reproductive method of gametophytic apomixis. We also summarize three schemes to achieve engineered apomixis, which will offer more opportunities for the realization of apomictic reproduction.

18.
aBIOTECH ; 1(3): 185-193, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36303566

RESUMO

How somatic cells develop into a whole plant is a central question in plant developmental biology. This powerful ability of plant cells is recognized as their totipotency. Somatic embryogenesis is an excellent example and a good research system for studying plant cell totipotency. However, very little is known about the molecular basis of cell reprogramming from somatic cells to totipotent cells in this process. During somatic embryogenesis from immature zygotic embryos in Arabidopsis, exogenous auxin treatment is required for embryonic callus formation, but removal of exogenous auxin inducing endogenous auxin biosynthesis is essential for somatic embryo (SE) induction. Ectopic expression of specific transcription factor genes, such as "LAFL" and BABY BOOM (BBM), can induce SEs without exogenous growth regulators. Somatic embryogenesis can also be triggered by stress, as well as by disruption of chromatin remodeling, including PRC2-mediated histone methylation, histone deacetylation, and PKL-related chromatin remodeling. It is evident that embryonic identity genes are required and endogenous auxin plays a central role for cell reprogramming during the induction of SEs. Thus, we focus on reviewing the regulation of cell reprogramming for somatic embryogenesis by auxin.

19.
J Integr Plant Biol ; 50(7): 816-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18713392

RESUMO

Plant mature cells have the capability to reverse their state of differentiation and produce new organs under cultured conditions. Two phases, dedifferentiation and redifferentiation, are commonly characterized during in vitro organogenesis. In these processes, cells undergo fate switch several times regulated by both extrinsic and intrinsic factors, which are associated with reentry to the cell cycle, the balance between euchromatin and heterochromatin, reprogramming of gene expression, and so forth. This short article reviews the advances in the mechanism of organ regeneration from plant somatic cells in molecular, genomic and epigenetic aspects, aiming to provide important information on the mechanism underlying cell fate switch during in vitro plant organogenesis.


Assuntos
Linhagem da Célula , Organogênese , Células Vegetais , Plantas/embriologia , Organogênese/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas/genética , Transdução de Sinais , Células-Tronco/citologia
20.
Front Plant Sci ; 8: 158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261231

RESUMO

De novo shoot regeneration is widely used in fundamental studies and agricultural applications. Actin microfilaments are involved in many aspects of plant cell division, cell morphogenesis and cell signal transduction. However, the function of actin microfilaments during de novo shoot regeneration is poorly understood. Here, we investigated the organization of actin microfilaments during this process and found that stem cell formation was associated with microfilament depolymerization. Furthermore, inhibition of microfilament depolymerization by phalloidin treatment or downregulation of actin depolymerizing factors (ADFs) restrained stem cell initiation and shoot regeneration. Inhibition of ADF expression affected the architecture of microfilaments during stem cell formation, and the polar transport and distribution of auxin were also disrupted. Together, our results demonstrate that organization of the microfilament cytoskeleton play important roles in stem cell formation and shoot meristem induction during shoot regeneration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa