Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Biophys J ; 116(3): 477-486, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30709620

RESUMO

The plasma membrane of cells has a complex architecture based on the bidimensional liquid-crystalline bilayer arrangement of phospho- and sphingolipids, which in turn embeds several proteins and is connected to the cytoskeleton. Several studies highlight the spatial membrane organization into more ordered (Lo or lipid raft) and more disordered (Ld) domains. We here report on a fluorescent analog of the green fluorescent protein chromophore that, when conjugated to a phospholipid, enables the quantification of the Lo and Ld domains in living cells on account of its large fluorescence lifetime variation in the two phases. The domain composition is straightforwardly obtained by the phasor approach to confocal fluorescence lifetime imaging, a graphical method that does not require global fitting of the fluorescence decay in every spatial position of the sample. Our imaging strategy was applied to recover the domain composition in human oligodendrocytes at rest and under treatment with galactosylsphingosine (psychosine). Exogenous psychosine administration recapitulates many of the molecular fingerprints of a severe neurological disease, globoid cell leukodystrophy, better known as Krabbe disease. We found out that psychosine progressively destabilizes plasma membrane, as witnessed by a shrinking of the Lo fraction. The unchanged levels of galactosyl ceramidase, i.e., the enzyme lacking in Krabbe disease, upon psychosine treatment suggest that psychosine alters the plasma membrane structure by direct physical effect, as also recently demonstrated in model membranes.


Assuntos
Membrana Celular/metabolismo , Leucodistrofia de Células Globoides/patologia , Bicamadas Lipídicas/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Microdomínios da Membrana/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Oligodendroglia/patologia
2.
Phys Rev Lett ; 120(20): 208102, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864360

RESUMO

In water, networks of semiflexible fibrils of the protein α-synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.


Assuntos
Amiloide/química , Modelos Químicos , alfa-Sinucleína/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Polimerização , Reologia , Substâncias Viscoelásticas
3.
J Biol Chem ; 291(40): 21110-21122, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27531743

RESUMO

Human α-synuclein (αS) has been shown to be N terminally acetylated in its physiological state. This modification is proposed to modulate the function and aggregation of αS into amyloid fibrils. Using bacterially expressed acetylated-αS (NTAc-αS) and endogenous αS (Endo-αS) from human erythrocytes, we show that N-terminal acetylation has little impact on αS binding to anionic membranes and thus likely not relevant for regulating membrane affinity. N-terminal acetylation does have an effect on αS aggregation, resulting in a narrower distribution of the aggregation lag times and rates. 2D-IR spectra show that acetylation changes the secondary structure of αS in fibrils. This difference may arise from the slightly higher helical propensity of acetylated-αS in solution leading to a more homogenous fibril population with different fibril structure than non-acetylated αS. We speculate that N-terminal acetylation imposes conformational restraints on N-terminal residues in αS, thus predisposing αS toward specific interactions with other binding partners or alternatively decrease nonspecific interactions.


Assuntos
Membranas Artificiais , Fosfolipídeos/química , Agregados Proteicos , alfa-Sinucleína/química , Acetilação , Humanos , Fosfolipídeos/metabolismo , Espectrofotometria Infravermelho , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
4.
J Am Chem Soc ; 139(12): 4254-4257, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28298083

RESUMO

The intrinsically disordered human protein alpha-Synuclein (αS) has a prominent role in Parkinson's disease (PD) pathology. Several familial variants of αS are correlated with inherited PD. Disease mutations have been shown to have an impact on lipid membrane binding. Here, using electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling, we show that familial PD-associated variants are structurally defective in membrane binding and alter the local binding properties of the protein.


Assuntos
Bicamadas Lipídicas/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Mutação , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
5.
J Am Chem Soc ; 139(43): 15392-15400, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968082

RESUMO

C-terminal truncations of monomeric wild-type alpha-synuclein (henceforth WT-αS) have been shown to enhance the formation of amyloid aggregates both in vivo and in vitro and have been associated with accelerated progression of Parkinson's disease (PD). The correlation with PD may not solely be a result of faster aggregation, but also of which fibril polymorphs are preferentially formed when the C-terminal residues are deleted. Considering that different polymorphs are known to result in distinct pathologies, it is important to understand how these truncations affect the organization of αS into fibrils. Here we present high-resolution microscopy and advanced vibrational spectroscopy studies that indicate that the C-terminal truncation variant of αS, lacking residues 109-140 (henceforth referred to as 1-108-αS), forms amyloid fibrils with a distinct structure and morphology. The 1-108-αS fibrils have a unique negative circular dichroism band at ∼230 nm, a feature that differs from the canonical ∼218 nm band usually observed for amyloid fibrils. We show evidence that 1-108-αS fibrils consist of strongly twisted ß-sheets with an increased inter-ß-sheet distance and a higher solvent exposure than WT-αS fibrils, which is also indicated by the pronounced differences in the 1D-IR (FTIR), 2D-IR, and vibrational circular dichroism spectra. As a result of their distinct ß-sheet structure, 1-108-αS fibrils resist incorporation of WT-αS monomers.


Assuntos
Amiloide/química , alfa-Sinucleína/química , Dicroísmo Circular , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Conformação Proteica em Folha beta , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Chemphyschem ; 18(12): 1620-1626, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28370874

RESUMO

The interaction of α-synuclein (αS) with membranes is thought to be critical in the etiology of Parkinson's disease. Besides oligomeric αS aggregates that possibly form membrane pores, the aggregation of αS into amyloid fibrils has been reported to disrupt membranes. The mechanism by which aggregation affects the integrity of membranes is, however, unknown. Here, we show that whereas mature αS fibrils only weakly adhere to POPC/POPG giant unilamellar vesicles (GUVs), fibrillization of αS on the membrane results in large-scale membrane remodeling. Fibrils that grow on the vesicle surface stiffen the membrane and make the initially spherical membrane become polyhedral. Additionally, membrane-attached fibrils extract lipids. The lipid extraction and membrane remodeling of growing fibrils can consume the complete bilayer surface and results in loss of vesicle content. These observations suggest that there are several mechanisms by which growing fibrils can disrupt membrane function.


Assuntos
Amiloide/química , Bicamadas Lipídicas/química , Lipossomas Unilamelares/química , alfa-Sinucleína/química , Modelos Moleculares , Agregados Proteicos
7.
Eur Biophys J ; 46(1): 91-101, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27815573

RESUMO

A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.


Assuntos
Bicamadas Lipídicas/química , Maleatos/química , Poliestirenos/química , Membrana Celular/química , Solubilidade
8.
Phys Chem Chem Phys ; 19(28): 18147-18151, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28696461

RESUMO

Human alpha-Synuclein (aS), implicated in Parkinson's disease, adopts a rich variety of different conformations depending on the macromolecular context. In order to unravel its pathophysiological role, monitoring its intracellular conformational state and identifying differences for the disease variants is crucial. Here, we present an intracellular spectroscopy approach based on a systematic spin-labeling site-scan in combination with intracellular electron paramagnetic resonance spectroscopy determining conformations on a molecular scale. A quantitative and model-based data analysis revealed that the vast majority of aS, be it wild-type or disease variants A30P or A53T, exists in the monomeric intrinsically disordered form in the cell.


Assuntos
alfa-Sinucleína/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Oócitos/metabolismo , Mutação Puntual , Marcadores de Spin , Xenopus laevis/crescimento & desenvolvimento , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
Isr J Chem ; 57(7-8): 762-770, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28919642

RESUMO

Human α-synuclein, a protein relevant in the brain with so-far unknown function, plays an important role in Parkinson's disease. The phosphorylation state of αS was related to the disease, prompting interest in this process. The presumed physiological function and the disease action of αS involves membrane interaction. Here, we study the effect of phosphorylation at positions 87 and 129, mimicked by the mutations S87A, S129A (nonphosphorylated) and S87D, S129D (phosphorylated) on membrane binding. Local binding is detected by spin-label continuous-wave electron paramagnetic resonance. For S87A/D, six positions (27, 56, 63, 69, 76, and 90) are probed; and for S129A/D, three (27, 56, and 69). Binding to large unilamellar vesicles of 100 nm diameter of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in a 1 : 1 composition is not affected by the phosphorylation state of S129. For phosphorylation at S87, local unbinding of αS from the membrane is observed. We speculate that modulating the local membrane affinity by phosphorylation could tune the way αS interacts with different membranes; for example, tuning its membrane fusion activity.

10.
Biophys J ; 111(11): 2440-2449, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27926845

RESUMO

The aggregation of membrane-bound α-synuclein (αS) into oligomers and/or amyloid fibrils has been suggested to cause membrane damage in in vitro model phospholipid membrane systems and in vivo. In this study, we investigate how αS interactions that precede the formation of well-defined aggregates influence physical membrane properties. Using three truncated variants of αS with different aggregation propensities and comparable phospholipid membrane binding affinities we show, using fluorescence recovery after photobleaching (FRAP) and fluorescence anisotropy measurements, that formation of αS clusters on supported lipid bilayers (SLBs) impairs lateral lipid diffusion and increases lipid packing beneath the αS clusters. Formation of protein clusters starts immediately after monomer addition. The magnitudes of the changes in effective lipid diffusion and lipid order increase with the protein cluster size. Our results show that the combination of inter-αS and αS-membrane interactions can drive the formation of more ordered lipid domains. Considering the functional involvement of membrane micro-domains in biological membranes, αS-induced domain formation may be relevant for alternative disease mechanisms.


Assuntos
Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Agregados Proteicos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Difusão , Ligação Proteica
11.
Opt Express ; 24(8): 8594-619, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137296

RESUMO

We present a method to discriminate between analytes based on their size using multiple wavelengths in a Young interferometer. We measured the response of two wavelengths when adding 85 nm beads (representing specific binding), protein A (representing non-specific binding) and D-glucose (inducing a bulk change) to our sensor. Next, the measurements are analysed using a approach based on theoretical analysis, and a ratio-based analysis approach to discriminate between bulk changes and the binding of the different sized substances. Moreover, we were able to discriminate binding of 85 nm beads from binding of protein A (~2 nm) in a blind experiment using the ratio-based approach. This can for example be used to discriminate specific analyte binding of larger particles from non-specific binding of smaller particles. Therefore, we believe that by adding size-selectivity we can strongly improve the performance of the Young interferometer sensor and integrated optical interferometric sensors in general.

12.
Opt Express ; 24(12): 12635-50, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410285

RESUMO

We demonstrate an integrated optical probe including an on-chip microlens for a common-path swept-source optical coherence tomography system. This common-path design uses the end facet of the silicon oxynitride waveguide as the reference plane, thus eliminating the need of a space-consuming and dispersive on-chip loop reference arm, thereby obviating the need for dispersion compensation. The on-chip micro-ball lens eliminates the need of external optical elements for coupling the light between the chip and the sample. The use of this lens leads to a signal enhancement up to 37 dB compared to the chip without a lens. The light source, the common-path arm and the detector are connected by a symmetric Y junction having a wavelength independent splitting ratio (50/50) over a much larger bandwidth than can be obtained with a directional coupler. The signal-to-noise ratio of the system was measured to be 71 dB with 2.6 mW of power on a mirror sample at a distance of 0.3 mm from the waveguide end facet. Cross-sectional OCT images of a layered optical phantom sample are demonstrated with our system. A method, based on an extended Fourier-domain OCT model, for suppressing ghost images caused by additional parasitic reference planes is experimentally demonstrated.

13.
Langmuir ; 32(45): 11827-11836, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27766878

RESUMO

Phospholipid vesicles are commonly used to get insights into the mechanism by which oligomers of amyloidogenic proteins damage membranes. Oligomers of the protein α-synuclein (αS) are thought to create pores in phospholipid vesicles containing a high amount of anionic phospholipids but fail to damage vesicle membranes at low surface charge densities. The current understanding of how αS oligomers damage the membranes is thus incomplete. This incomplete understanding may, in part, result from the choice of model membrane systems. The use of free-standing membranes such as vesicles may interfere with the unraveling of some damage mechanisms because the line tension at the edge of a membrane defect or pore ensures defect closure. Here, we have used supported lipid bilayers (SLBs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPC/POPS) to study the membrane damage caused by αS oligomers. Although αS oligomers were not able to initiate the disruption of POPC/POPS vesicles or intact SLBs, oligomers did stabilize and enlarge pre-existing SLB defects. The increased exposure of lipid acyl chains at the edges of defects very likely facilitates membrane-oligomer interactions, resulting in the growth of fractal domains devoid of lipids. Concomitant with the appearance of the fractal membrane damage patterns, lipids appear in solution, directly implicating αS oligomers in the observed lipid extraction. The growth of the membrane damage patterns is not limited by the binding of lipids to the oligomer. The analysis of the shape and growth of the lipid-free domains suggests the involvement of an oligomer-dependent diffusion-limited extraction mechanism. The observed αS oligomer-induced propagation of membrane defects offers new insights into the mechanisms by which αS oligomers can contribute to the loss in membrane integrity.


Assuntos
Membrana Celular/química , alfa-Sinucleína/química , Membrana Celular/patologia , Fractais , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Microscopia Confocal , Fosfatidilcolinas/química , Fosfatidilserinas/química , Imagem com Lapso de Tempo , Lipossomas Unilamelares/química , alfa-Sinucleína/metabolismo
14.
Cell Mol Life Sci ; 72(24): 4899-913, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26190022

RESUMO

Most Alzheimer's disease (AD) cases are late-onset and characterized by the aggregation and deposition of the amyloid-beta (Aß) peptide in extracellular plaques in the brain. However, a few rare and hereditary Aß mutations, such as the Italian Glu22-to-Lys (E22K) mutation, guarantee the development of early-onset familial AD. This type of AD is associated with a younger age at disease onset, increased ß-amyloid accumulation, and Aß deposition in cerebral blood vessel walls, giving rise to cerebral amyloid angiopathy (CAA). It remains largely unknown how the Italian mutation results in the clinical phenotype that is characteristic of CAA. We therefore investigated how this single point mutation may affect the aggregation of Aß1-42 in vitro and structurally characterized the resulting fibrils using a biophysical approach. This paper reports that wild-type and Italian-mutant Aß both form fibrils characterized by the cross-ß architecture, but with distinct ß-sheet organizations, resulting in differences in thioflavin T fluorescence and solvent accessibility. E22K Aß1-42 oligomers and fibrils both display an antiparallel ß-sheet structure, in comparison with the parallel ß-sheet structure of wild-type fibrils, characteristic of most amyloid fibrils described in the literature. Moreover, we demonstrate structural plasticity for Italian-mutant Aß fibrils in a pH-dependent manner, in terms of their underlying ß-sheet arrangement. These findings are of interest in the ongoing debate that (1) antiparallel ß-sheet structure might represent a signature for toxicity, which could explain the higher toxicity reported for the Italian mutant, and that (2) fibril polymorphism might underlie differences in disease pathology and clinical manifestation.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Amiloide/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Substituição de Aminoácidos , Amiloide/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Estudos de Associação Genética , Humanos , Fenótipo , Mutação Puntual , Estrutura Secundária de Proteína
15.
Biochemistry ; 54(20): 3142-50, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25909158

RESUMO

Single-amino acid mutations in the human α-synuclein (αS) protein are related to early onset Parkinson's disease (PD). In addition to the well-known A30P, A53T, and E46K mutants, recently a number of new familial disease-related αS mutations have been discovered. How these mutations affect the putative physiological function of αS and the disease pathology is still unknown. Here we focus on the H50Q and G51D familial mutants and show that like wild-type αS, H50Q and G51D monomers bind to negatively charged membranes, form soluble partially folded oligomers with an aggregation number of ~30 monomers under specific conditions, and can aggregate into amyloid fibrils. We systematically studied the ability of these isolated oligomers to permeabilize membranes composed of anionic phospholipids (DOPG) and membranes mimicking the mitochondrial phospholipid composition (CL:POPE:POPC) using a calcein release assay. Small-angle X-ray scattering studies of isolated oligomers show that oligomers formed from wild-type αS and the A30P, E46K, H50Q, G51D, and A53T disease-related mutants are composed of a similar number of monomers. However, although the binding affinity of the monomeric protein and the aggregation number of the oligomers formed under our specific protocol are comparable for wild-type αS and H50Q and G51D αS, G51D oligomers cannot disrupt negatively charged and physiologically relevant model membranes. Replacement of the membrane-immersed glycine with a negatively charged aspartic acid at position 51 apparently abrogates membrane destabilization, whereas a mutation in the proximal but solvent-exposed part of the membrane-bound α-helix such as that found in the H50Q mutant has little effect on the bilayer disrupting properties of oligomers.


Assuntos
Fosfatidilgliceróis/química , alfa-Sinucleína/química , Permeabilidade da Membrana Celular , Fluoresceínas/química , Humanos , Membranas Artificiais , Complexos Multiproteicos/química , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X , alfa-Sinucleína/genética
16.
J Biol Chem ; 289(19): 13445-60, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24662291

RESUMO

Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both homotypic interactions with other ALCAM molecules and heterotypic interactions with the surface receptor CD6 expressed at the T cell surface. Despite biochemical and biophysical evidence of a dynamic association between ALCAM and the actin cytoskeleton, no detailed information is available about how this association occurs at the molecular level. Here, we exploit a combination of complementary microscopy techniques, including FRET detected by fluorescence lifetime imaging microscopy and single-cell force spectroscopy, and we demonstrate the existence of a preformed ligand-independent supramolecular complex where ALCAM stably interacts with actin by binding to syntenin-1 and ezrin. Interaction with the ligand CD6 further enhances these multiple interactions. Altogether, our results propose a novel biophysical framework to understand the stabilizing role of the ALCAM supramolecular complex engaged to CD6 during dendritic cell-T cell interactions and provide novel information on the molecular players involved in the formation and signaling of the immunological synapse at the dendritic cell side.


Assuntos
Citoesqueleto de Actina/metabolismo , Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Comunicação Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Células Dendríticas/metabolismo , Proteínas Fetais/metabolismo , Sinteninas/metabolismo , Linfócitos T/metabolismo , Citoesqueleto de Actina/genética , Animais , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Citoesqueleto/genética , Células Dendríticas/citologia , Proteínas Fetais/genética , Humanos , Células K562 , Camundongos , Ligação Proteica , Sinteninas/genética , Linfócitos T/citologia
17.
Biochim Biophys Acta ; 1844(12): 2127-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224747

RESUMO

The intrinsically disordered human α-synuclein (αSyn) protein exhibits considerable heterogeneity in in vitro fibrillization reactions. Using atomic force microscopy (AFM) we show that depending on the solvent conditions, A140C mutant and wild-type αSyn can be directed to reproducibly form homogeneous populations of fibrils exhibiting regular periodicity. Results from Thioflavin-T fluorescence assays, determination of residual monomer concentrations and native polyacrylamide gel electrophoresis reveal that solvent conditions including EDTA facilitate incorporation of a larger fraction of monomers into fibrils. The fibrils formed in 10mM Tris-HCl, 10mM NaCl and 0.1mM EDTA at pH7.4 display a narrow distribution of periodicities with an average value of 102±6nm for the A140C mutant and 107±9nm for wt αSyn. The ability to produce a homogeneous fibril population can be instrumental in understanding the detailed structural features of fibrils and the fibril assembly process. Moreover, the availability of morphologically well-defined fibrils will enhance the potential for use of amyloids as biological nanomaterials.

18.
Small ; 11(19): 2257-62, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25641873

RESUMO

Multivalent membrane binding sites on the α-synuclein oligomer result in clustering of vesicles and hemifusion of negatively charged model membranes. These multivalent, biological nanoparticles are reminiscent of inorganic nanoparticles in their interactions with membranes. Alpha-synuclein oligomers induce lipid exchange efficiently, with fewer than 10 oligomers/vesicle required to complete hemifusion. No full fusion or vesicle content mixing is observed.


Assuntos
Amiloide/química , Nanopartículas/química , Multimerização Proteica , Lipossomas Unilamelares/química , alfa-Sinucleína/química , Corantes Fluorescentes/química , Fosfatidilgliceróis/química
19.
Opt Express ; 23(17): 22414-23, 2015 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-26368211

RESUMO

We demonstrate a fabrication procedure for the direct integration of micro-ball lenses on planar integrated optical channel waveguide chips with the aim to reduce the divergence of light that arises from the waveguide in both horizontal and vertical directions. Fabrication of the lenses is based on photoresist reflow which is a procedure that allows for the use of photolithography for careful alignment of the lenses with respect to the waveguides and enables mass production. We present in detail the design and fabrication procedures. Optical characterization of the fabricated micro-ball lenses demonstrates a good performance in terms of beam-size reduction and beam shape. The beam half divergence angle of 1544 nm light is reduced from 12.4 ° to 1.85 °.

20.
Phys Chem Chem Phys ; 17(1): 422-7, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25406679

RESUMO

Noble metal nanoparticles possess very large scattering cross-sections, which make them useful as tags in biosensing assays with the potential to detect even single binding events. In this study, we investigated the effects of nanoparticle size on the shift in the light scattering spectrum following formation of Au-Au, Ag-Ag or Ag-Au dimers using FDTD simulations. We discuss the use of a color camera to detect these spectral changes for application in a target-induced dimerization sensing assay. Dimerization of Au nanoparticles induced a larger shift in color compared to Ag nanoparticles. Heterodimers composed of 60 nm Ag and 40 nm Au demonstrated an even larger spectral shift and color response compared to the best homodimer pair (80-40 nm Au). The increased spectral shift of the Ag-Au heterodimer was subsequently observed experimentally for the DNA-induced dimerization of nanoparticles, showing that careful selection of nanoparticle size and composition can significantly enhance recognition of nanoparticle dimerization events for use in (color) sensing assays.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Ouro/química , Nanopartículas Metálicas/química , Prata/química , DNA de Cadeia Simples/química , Dimerização , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa