Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nat Chem Biol ; 19(10): 1215-1222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37127754

RESUMO

Histone acetyltransferases (HATs) are implicated as both oncogene and nononcogene dependencies in diverse human cancers. Acetyl-CoA-competitive HAT inhibitors have emerged as potential cancer therapeutics and the first clinical trial for this class of drugs is ongoing (NCT04606446). Despite these developments, the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood. Having discovered that multiple regulators of de novo coenzyme A (CoA) biosynthesis can modulate sensitivity to CBP/p300 HAT inhibition (PANK3, PANK4 and SLC5A6), we determined that elevated acetyl-CoA concentrations can outcompete drug-target engagement to elicit acquired drug resistance. This not only affects structurally diverse CBP/p300 HAT inhibitors, but also agents related to an investigational KAT6A/B HAT inhibitor that is currently in Phase 1 clinical trials. Altogether, this work uncovers CoA metabolism as an unexpected liability of anticancer HAT inhibitors and will therefore buoy future efforts to optimize the efficacy of this new form of targeted therapy.


Assuntos
Histona Acetiltransferases , Neoplasias , Humanos , Histona Acetiltransferases/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilcoenzima A/metabolismo , Ligação Proteica
2.
J Bacteriol ; 206(3): e0001524, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38323910

RESUMO

Antibiotics that inhibit peptidoglycan synthesis trigger the activation of both specific and general protective responses. σM responds to diverse antibiotics that inhibit cell wall synthesis. Here, we demonstrate that cell wall-inhibiting drugs, such as bacitracin and cefuroxime, induce the σM-dependent ytpAB operon. YtpA is a predicted hydrolase previously proposed to generate the putative lysophospholipid antibiotic bacilysocin (lysophosphatidylglycerol), and YtpB is the branchpoint enzyme for the synthesis of membrane-localized C35 terpenoids. Using targeted lipidomics, we reveal that YtpA is not required for the production of lysophosphatidylglycerol. Nevertheless, ytpA was critical for growth in a mutant strain defective for homeoviscous adaptation due to a lack of genes for the synthesis of branched chain fatty acids and the Des phospholipid desaturase. Consistently, overexpression of ytpA increased membrane fluidity as monitored by fluorescence anisotropy. The ytpA gene contributes to bacitracin resistance in mutants additionally lacking the bceAB or bcrC genes, which directly mediate bacitracin resistance. These epistatic interactions support a model in which σM-dependent induction of the ytpAB operon helps cells tolerate bacitracin stress, either by facilitating the flipping of the undecaprenyl phosphate carrier lipid or by impacting the assembly or function of membrane-associated complexes involved in cell wall homeostasis.IMPORTANCEPeptidoglycan synthesis inhibitors include some of our most important antibiotics. In Bacillus subtilis, peptidoglycan synthesis inhibitors induce the σM regulon, which is critical for intrinsic antibiotic resistance. The σM-dependent ytpAB operon encodes a predicted hydrolase (YtpA) and the enzyme that initiates the synthesis of C35 terpenoids (YtpB). Our results suggest that YtpA is critical in cells defective in homeoviscous adaptation. Furthermore, we find that YtpA functions cooperatively with the BceAB and BcrC proteins in conferring intrinsic resistance to bacitracin, a peptide antibiotic that binds tightly to the undecaprenyl-pyrophosphate lipid carrier that sustains peptidoglycan synthesis.


Assuntos
Bacillus subtilis , Bacitracina , Bacitracina/farmacologia , Bacitracina/metabolismo , Bacillus subtilis/genética , Peptidoglicano/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Parede Celular/metabolismo , Membrana Celular/metabolismo , Óperon , Hidrolases/metabolismo , Lipídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
J Biol Chem ; 299(7): 104863, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236358

RESUMO

Lysophospholipids are deacylated derivatives of their bilayer forming phospholipid counterparts that are present at low concentrations in cells. Phosphatidylglycerol (PG) is the principal membrane phospholipid in Staphylococcus aureus and lysophosphatidylglycerol (LPG) is detected in low abundance. Here, we used a mass spectrometry screen to identify locus SAUSA300_1020 as the gene responsible for maintaining low concentrations of 1-acyl-LPG in S. aureus. The SAUSA300_1020 gene encodes a protein with a predicted amino terminal transmembrane α-helix attached to a globular glycerophosphodiester phosphodiesterase (GDPD) domain. We determined that the purified protein lacking the hydrophobic helix (LpgDΔN) possesses cation-dependent lysophosphatidylglycerol phospholipase D activity that generates both lysophosphatidic acid (LPA) and cyclic-LPA products and hydrolyzes cyclic-LPA to LPA. Mn2+ was the highest affinity cation and stabilized LpgDΔN to thermal denaturation. LpgDΔN was not specific for the phospholipid headgroup and degraded 1-acyl-LPG, but not 2-acyl-LPG. Furthermore, a 2.1 Å crystal structure shows that LpgDΔN adopts the GDPD variation of the TIM barrel architecture except for the length and positioning of helix α6 and sheet ß7. These alterations create a hydrophobic diffusion path for LPG to access the active site. The LpgD active site has the canonical GDPD metal binding and catalytic residues, and our biochemical characterization of site-directed mutants support a two-step mechanism involving a cyclic-LPA intermediate. Thus, the physiological function of LpgD in S. aureus is to convert LPG to LPA, which is re-cycled into the PG biosynthetic pathway at the LPA acyltransferase step to maintain membrane PG molecular species homeostasis.


Assuntos
Fosfolipase D , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Lisofosfolipídeos/metabolismo , Fosfatidilgliceróis
4.
J Pharmacol Exp Ther ; 388(1): 171-180, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875310

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is characterized by a motor disorder with combinations of dystonia, parkinsonism, and spasticity, leading to premature death. PKAN is caused by mutations in the PANK2 gene that result in loss or reduction of PANK2 protein function. PANK2 is one of three kinases that initiate and regulate coenzyme A biosynthesis from vitamin B5, and the ability of BBP-671, an allosteric activator of pantothenate kinases, to enter the brain and elevate coenzyme A was investigated. The metabolic stability, protein binding, and membrane permeability of BBP-671 all suggest that it has the physical properties required to cross the blood-brain barrier. BBP-671 was detected in plasma, liver, cerebrospinal fluid, and brain following oral administration in rodents, demonstrating the ability of BBP-671 to penetrate the brain. The pharmacokinetic and pharmacodynamic properties of orally administered BBP-671 evaluated in cannulated rats showed that coenzyme A (CoA) concentrations were elevated in blood, liver, and brain. BBP-671 elevation of whole-blood acetyl-CoA served as a peripheral pharmacodynamic marker and provided a suitable method to assess target engagement. BBP-671 treatment elevated brain coenzyme A concentrations and improved movement and body weight in a PKAN mouse model. Thus, BBP-671 crosses the blood-brain barrier to correct the brain CoA deficiency in a PKAN mouse model, resulting in improved locomotion and survival and providing a preclinical foundation for the development of BBP-671 as a potential treatment of PKAN. SIGNIFICANCE STATEMENT: The blood-brain barrier represents a major hurdle for drugs targeting brain metabolism. This work describes the pharmacokinetic/pharmacodynamic properties of BBP-671, a pantothenate kinase activator. BBP-671 crosses the blood-brain barrier to correct the neuron-specific coenzyme A (CoA) deficiency and improve motor function in a mouse model of pantothenate kinase-associated neurodegeneration. The central role of CoA and acetyl-CoA in intermediary metabolism suggests that pantothenate kinase activators may be useful in modifying neurological metabolic disorders.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Camundongos , Animais , Ratos , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapêutico , Coenzima A/metabolismo , Modelos Animais de Doenças , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Encéfalo/metabolismo
5.
J Biol Chem ; 298(6): 101993, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35490779

RESUMO

Fatty acid kinase (Fak) is a two-component enzyme that generates acyl-phosphate for phospholipid synthesis. Fak consists of a kinase domain protein (FakA) that phosphorylates a fatty acid enveloped by a fatty acid binding protein (FakB). The structural basis for FakB function has been established, but little is known about FakA. Here, we used limited proteolysis to define three separate FakA domains: the amino terminal FakA_N, the central FakA_L, and the carboxy terminal FakA_C. The isolated domains lack kinase activity, but activity is restored when FakA_N and FakA_L are present individually or connected as FakA_NL. The X-ray structure of the monomeric FakA_N captures the product complex with ADP and two Mg2+ ions bound at the nucleotide site. The FakA_L domain encodes the dimerization interface along with conserved catalytic residues Cys240, His282, and His284. AlphaFold analysis of FakA_L predicts the catalytic residues are spatially clustered and pointing away from the dimerization surface. Furthermore, the X-ray structure of FakA_C shows that it consists of two subdomains that are structurally related to FakB. Analytical ultracentrifugation demonstrates that FakA_C binds FakB, and site-directed mutagenesis confirms that a positively charged wedge on FakB meshes with a negatively charged groove on FakA_C. Finally, small angle X-ray scattering analysis is consistent with freely rotating FakA_N and FakA_C domains tethered by flexible linkers to FakA_L. These data reveal specific roles for the three independently folded FakA protein domains in substrate binding and catalysis.


Assuntos
Staphylococcus aureus , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Ácidos Graxos/metabolismo , Humanos , Infecções Estafilocócicas , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo
6.
J Biol Chem ; 298(3): 101676, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122790

RESUMO

Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein-FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a "closed" FakB1 state to an "open" state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Ligantes , Mamíferos/metabolismo , Membranas/química , Membranas/metabolismo , Fosfatos/metabolismo , Conformação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
7.
Chemistry ; 29(29): e202300262, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36867738

RESUMO

Cruentaren A is a natural product that exhibits potent antiproliferative activity against various cancer cell lines, yet its binding site within ATP synthase remained unknown, thus limiting the development of improved analogues as anticancer agents. Herein, we report the cryogenic electron microscopy (cryoEM) structure of cruentaren A bound to ATP synthase, which allowed the design of new inhibitors through semisynthetic modification. Examples of cruentaren A derivatives include a trans-alkene isomer, which was found to exhibit similar activity to cruentaren A against three cancer cell lines as well as several other analogues that retained potent inhibitory activity. Together, these studies provide a foundation for the generation of cruentaren A derivatives as potential therapeutics for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Microscopia Crioeletrônica , Linhagem Celular , Antineoplásicos/farmacologia , Antineoplásicos/química , Trifosfato de Adenosina , Relação Estrutura-Atividade
8.
J Inherit Metab Dis ; 46(1): 28-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36251252

RESUMO

Propionic acidemia (PA, OMIM 606054) is a devastating inborn error of metabolism arising from mutations that reduce the activity of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). The defects in PCC reduce the concentrations of nonesterified coenzyme A (CoASH), thus compromising mitochondrial function and disrupting intermediary metabolism. Here, we use a hypomorphic PA mouse model to test the effectiveness of BBP-671 in correcting the metabolic imbalances in PA. BBP-671 is a high-affinity allosteric pantothenate kinase activator that counteracts feedback inhibition of the enzyme to increase the intracellular concentration of CoA. Liver CoASH and acetyl-CoA are depressed in PA mice and BBP-671 treatment normalizes the cellular concentrations of these two key cofactors. Hepatic propionyl-CoA is also reduced by BBP-671 leading to an improved intracellular C3:C2-CoA ratio. Elevated plasma C3:C2-carnitine ratio and methylcitrate, hallmark biomarkers of PA, are significantly reduced by BBP-671. The large elevations of malate and α-ketoglutarate in the urine of PA mice are biomarkers for compromised tricarboxylic acid cycle activity and BBP-671 therapy reduces the amounts of both metabolites. Furthermore, the low survival of PA mice is restored to normal by BBP-671. These data show that BBP-671 relieves CoA sequestration, improves mitochondrial function, reduces plasma PA biomarkers, and extends the lifespan of PA mice, providing the preclinical foundation for the therapeutic potential of BBP-671.


Assuntos
Acidemia Propiônica , Camundongos , Animais , Acidemia Propiônica/genética , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Descarboxilase/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Carnitina
9.
J Biol Chem ; 297(6): 101434, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801557

RESUMO

Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the ß-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.


Assuntos
Proteína de Transporte de Acila/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/biossíntese , Shewanella/metabolismo , Proteína de Transporte de Acila/genética , Parede Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ácido Graxo Sintase Tipo II/genética , Ácidos Graxos/genética , Shewanella/genética
10.
J Transl Med ; 20(1): 103, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197056

RESUMO

BACKGROUND: Pantothenate kinase (PANK) is the first and rate-controlling enzymatic step in the only pathway for cellular coenzyme A (CoA) biosynthesis. PANK-associated neurodegeneration (PKAN), formerly known as Hallervorden-Spatz disease, is a rare, life-threatening neurologic disorder that affects the CNS and arises from mutations in the human PANK2 gene. Pantazines, a class of small molecules containing the pantazine moiety, yield promising therapeutic effects in an animal model of brain CoA deficiency. A reliable technique to identify the neurometabolic effects of PANK dysfunction and to monitor therapeutic responses is needed. METHODS: We applied 1H magnetic resonance spectroscopy as a noninvasive technique to evaluate the therapeutic effects of the newly developed Pantazine BBP-671. RESULTS: 1H MRS reliably quantified changes in cerebral metabolites, including glutamate/glutamine, lactate, and N-acetyl aspartate in a neuronal Pank1 and Pank2 double-knockout (SynCre+ Pank1,2 dKO) mouse model of brain CoA deficiency. The neuronal SynCre+ Pank1,2 dKO mice had distinct decreases in Glx/tCr, NAA/tCr, and lactate/tCr ratios compared to the wildtype matched control mice that increased in response to BBP-671 treatment. CONCLUSIONS: BBP-671 treatment completely restored glutamate/glutamine levels in the brains of the mouse model, suggesting that these metabolites are promising clinically translatable biomarkers for future therapeutic trials.


Assuntos
Coenzima A , Neurodegeneração Associada a Pantotenato-Quinase , Animais , Encéfalo/patologia , Coenzima A/metabolismo , Modelos Animais de Doenças , Camundongos , Neurodegeneração Associada a Pantotenato-Quinase/genética , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
11.
J Org Chem ; 87(15): 9940-9956, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35894845

RESUMO

The 90 kDa heat shock protein (Hsp90) belongs to a group of molecular chaperones that regulate homeostasis via the folding of nascent polypeptides into their biologically active proteins, many of which are involved in cancer development and progression. As a result, inhibition of Hsp90 is an exciting area of research for the treatment of cancer. However, most of the 18 Hsp90 N-terminal inhibitors evaluated in clinical trials exhibited deleterious side effects and toxicities. Cruentaren A is a natural product that manifests potent anticancer activity against various human cancer cell lines via disruption of interactions between Hsp90α and F1FO ATP synthase, which does not induce the pro-survival, heat shock response, a major limitation associated with current Hsp90 inhibitors. However, the development of cruentaren A as a new anticancer agent has been hindered by its complex structure. Herein, we systematically removed the functionalities present in fragment 2 of cruentaren A and incorporated some key structural modifications from previous work, which produced 12 simplified analogues. Our studies determined that all functional groups present in fragment 2 are essential for cruentaren A's anticancer activity.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Macrolídeos/farmacologia , Neoplasias/tratamento farmacológico
12.
Bioorg Med Chem ; 52: 116504, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34814071

RESUMO

Pantothenate kinase (PANK) is the critical regulator of intracellular levels of coenzyme A and has emerged as an attractive target for treating neurological and metabolic disorders. This report describes the optimization, synthesis, and full structure-activity relationships of a new chemical series of pantothenate competitive PANK inhibitors. Potent drug-like molecules were obtained by optimizing a high throughput screening hit, using lipophilic ligand efficiency (LipE) derived from human PANK3 IC50 values to guide ligand development. X-ray crystal structures of PANK3 with index inhibitors from the optimization were determined to rationalize the emerging structure activity relationships. The analysis revealed a key bidentate hydrogen bonding interaction between pyridazine and R306' as a major contributor to the LipE gain observed in the optimization. A tractable series of PANK3 modulators with nanomolar potency, excellent LipE values, desirable physicochemical properties, and a well-defined structural binding mode was produced from this study.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piridazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Piridazinas/síntese química , Piridazinas/química , Relação Estrutura-Atividade
13.
J Biol Chem ; 294(23): 9285-9294, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018965

RESUMO

Oleate hydratases (OhyAs) belong to a large family of bacterial proteins catalyzing the hydration or isomerization of double bonds in unsaturated fatty acids. A Staphylococcus aureus gene (Sa0102) is predicted to encode an OhyA. Here, we recombinantly expressed and purified SaOhyA and found that it forms a homodimer that requires FAD for activity. SaOhyA hydrates only unsaturated fatty acids containing cis-9 double bonds, but not fatty acids with trans-9 double bonds or cis double bonds at other positions. SaOhyA products were not detected in S. aureus phospholipids and were released into the growth medium. S. aureus does not synthesize unsaturated fatty acids, and the SaOhyA substrates are derived from infection sites. Palmitoleate (16:1(9Z)) is a major mammalian skin-produced antimicrobial fatty acid that protects against S. aureus infection, and we observed that it is an SaOhyA substrate and that its hydroxylated derivative is not antimicrobial. Treatment of S. aureus with 24 µm 16:1(9Z) immediately arrested growth, followed by growth resumption after a lag period of 2 h. The ΔohyA mutant strain did not recover from the 16:1(9Z) challenge, and increasing SaOhyA expression using a plasmid system prevented the initial growth arrest. Challenging S. aureus with sapienic acid (16:1(6Z)), an antimicrobial fatty acid produced only by human skin, arrested growth without recovery in WT, ΔohyA, and SaOhyA-overexpressing strains. We conclude that SaOhyA protects S. aureus from palmitoleic acid, the antimicrobial unsaturated fatty acid produced by most mammals, and that sapienic acid, uniquely produced by humans, counters the OhyA-dependent bacterial defense mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Hidroliases/metabolismo , Staphylococcus aureus/enzimologia , Animais , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidroliases/genética , Hidroliases/isolamento & purificação , Cinética , Pele/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Especificidade por Substrato
14.
J Biol Chem ; 294(1): 38-49, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30429218

RESUMO

Fatty acid (FA) kinase produces acyl-phosphate for the synthesis of membrane phospholipids in Gram-positive bacterial pathogens. FA kinase consists of a kinase protein (FakA) that phosphorylates an FA substrate bound to a second module, an FA-binding protein (FakB). Staphylococcus aureus expresses two distinct, but related, FakBs with different FA selectivities. Here, we report the structures of FakB1 bound to four saturated FAs at 1.6-1.93 Å resolution. We observed that the different FA structures are accommodated within a slightly curved hydrophobic cavity whose length is governed by the conformation of an isoleucine side chain at the end of the tunnel. The hydrophobic tunnel in FakB1 prevents the binding of cis-unsaturated FAs, which are instead accommodated by the kinked tunnel within the FakB2 protein. The differences in the FakB interiors are not propagated to the proteins' surfaces, preserving the protein-protein interactions with their three common partners, FakA, PlsX, and PlsY. Using cellular thermal shift analyses, we found that FakB1 binds FA in vivo, whereas a significant proportion of FakB2 does not. Incorporation of exogenous FA into phospholipid in ΔfakB1 and ΔfakB2 S. aureus knockout strains revealed that FakB1 does not efficiently activate unsaturated FAs. FakB2 preferred unsaturated FAs, but also allowed the incorporation of saturated FAs. These results are consistent with a model in which FakB1 primarily functions in the recycling of the saturated FAs produced by S. aureus metabolism, whereas FakB2 activates host-derived oleate, which S. aureus does not produce but is abundant at infection sites.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a Ácido Graxo/química , Ácido Oleico/química , Staphylococcus aureus/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácido Oleico/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Especificidade por Substrato
15.
Ann Plast Surg ; 85(4): 424-429, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31850964

RESUMO

BACKGROUND: Indications for adjuvant radiation therapy (XRT) in breast cancer have expanded. Although highly effective, XRT damages surrounding tissues and vasculature, often resulting in delayed or compromised breast reconstruction. Thus, effective yet safe methods of radiation injury prophylaxis would be desirable. Amifostine is a Food and Drug Administration-approved radioprotectant; however, concerns about its potential to also protect cancer remain. The purpose of this study was to evaluate the oncologic safety of amifostine (AMF) in vitro and determine its effect on human breast cancer cells in the setting of XRT. METHODS: One ER+/PR+/Her2- (MCF-7) and two ER-/PR-Her2- (MDA-MB-231, MDA-MB-468) breast cancer cell lines were investigated. Female fibroblasts were used as controls. Cells were treated with WR-1065, the active metabolite of AMF, 20 minutes before 0Gy, 10Gy, or 20Gy XRT. Live and dead cells were quantified; percent cell death was calculated. RESULTS: WR-1065 treatment significantly preserved viability and reduced healthy female fibroblasts death after XRT compared with untreated controls. All three breast cancer cells lines exhibited radiosensitivity with substantial cell death. Cancer cells retained their radiosensitivity despite WR-1065 pretreatment, achieving the same degree of cell death as untreated controls. CONCLUSIONS: This study demonstrated the proficiency of AMF to selectively protect healthy cells from XRT while breast cancer cells remained radiosensitive. These results support the oncologic safety of AMF in breast cancer in vitro. Further investigation is now warranted in vivo to ascertain the translational potential of using AMF as a radioprotectant to improve breast reconstruction after radiation treatment.


Assuntos
Amifostina , Neoplasias da Mama , Mamoplastia , Lesões por Radiação , Protetores contra Radiação , Amifostina/farmacologia , Amifostina/uso terapêutico , Animais , Neoplasias da Mama/radioterapia , Feminino , Humanos , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Ratos , Ratos Sprague-Dawley
16.
J Radiol Prot ; 40(1): 197-214, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31703227

RESUMO

The dismantling of structural objects during the decommissioning of nuclear facilities needs radioactive source characterisation for the planning of decommissioning strategies in compliance with the ALARA (as low as reasonably achievable) principle. The sources may arise from neutron activation of the structural components in the reactor core as well as contamination due to the radioactive release from the fuel occurred during normal operation or unplanned events in a nuclear power plant (NPP). In a pressurised heavy water reactor (PHWR), various in-core components are predominantly made of either zircaloy-2 or 4. The nuclides present as impurities in the zircaloy, playing a crucial role in the activity inventory due to neutron activation of those nuclides, which in turn determine the external gamma dose rate. The activity of the activation products depend on the neutron flux seen by the component, duration of irradiation and cooling period, half-lives of the daughter products and the amount of the impurities present in the structural components. To illustrate this, a guide tube made up of zircaloy-4 has been considered. A guide tube assembly is a part of the primary shut down system (PSS) which guides the movement of absorber elements in the upward and downward direction in the calandria. This study has identified and quantified the activity inventory in a guide tube at the end of the operation of the reactor using the ORIGEN2 code, and then estimated the associated external gamma dose rate using the FLUKA Monte Carlo code. The findings will help the management of radioactive waste, cost optimisation and collective dose budgeting during the decommissioning stage of a typical PHWR.


Assuntos
Centrais Nucleares , Exposição Ocupacional/normas , Exposição à Radiação/normas , Proteção Radiológica/normas , Zircônio/química , Raios gama , Resíduos Radioativos , Fatores de Tempo
17.
J Biol Chem ; 292(1): 15-30, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27903651

RESUMO

Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine.


Assuntos
Arginina/metabolismo , Proteínas de Transporte/metabolismo , Pontos de Checagem do Ciclo Celular/imunologia , Proliferação de Células , Complexos Multiproteicos/metabolismo , Células Mieloides/imunologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Tolerância Imunológica , Terapia de Imunossupressão , Ativação Linfocitária , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Linfócitos T/metabolismo
18.
J Biol Chem ; 291(42): 22302-22314, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27555321

RESUMO

Pantothenate kinase is the master regulator of CoA biosynthesis and is feedback-inhibited by acetyl-CoA. Comparison of the human PANK3·acetyl-CoA complex to the structures of PANK3 in four catalytically relevant complexes, 5'-adenylyl-ß,γ-imidodiphosphate (AMPPNP)·Mg2+, AMPPNP·Mg2+·pantothenate, ADP·Mg2+·phosphopantothenate, and AMP phosphoramidate (AMPPN)·Mg2+, revealed a large conformational change in the dimeric enzyme. The amino-terminal nucleotide binding domain rotates to close the active site, and this allows the P-loop to engage ATP and facilitates required substrate/product interactions at the active site. Biochemical analyses showed that the transition between the inactive and active conformations, as assessed by the binding of either ATP·Mg2+ or acyl-CoA to PANK3, is highly cooperative indicating that both protomers move in concert. PANK3(G19V) cannot bind ATP, and biochemical analyses of an engineered PANK3/PANK3(G19V) heterodimer confirmed that the two active sites are functionally coupled. The communication between the two protomers is mediated by an α-helix that interacts with the ATP-binding site at its amino terminus and with the substrate/inhibitor-binding site of the opposite protomer at its carboxyl terminus. The two α-helices within the dimer together with the bound ligands create a ring that stabilizes the assembly in either the active closed conformation or the inactive open conformation. Thus, both active sites of the dimeric mammalian pantothenate kinases coordinately switch between the on and off states in response to intracellular concentrations of ATP and its key negative regulators, acetyl(acyl)-CoA.


Assuntos
Acil Coenzima A/química , Mutação de Sentido Incorreto , Fosfotransferases (Aceptor do Grupo Álcool)/química , Acil Coenzima A/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Domínios Proteicos , Estrutura Secundária de Proteína
20.
Proc Natl Acad Sci U S A ; 111(29): 10532-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002480

RESUMO

Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Staphylococcus aureus/patogenicidade , Especificidade por Substrato , Transcrição Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa