Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nature ; 617(7959): 170-175, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37076618

RESUMO

Nucleotide excision repair removes DNA lesions caused by ultraviolet light, cisplatin-like compounds and bulky adducts1. After initial recognition by XPC in global genome repair or a stalled RNA polymerase in transcription-coupled repair, damaged DNA is transferred to the seven-subunit TFIIH core complex (Core7) for verification and dual incisions by the XPF and XPG nucleases2. Structures capturing lesion recognition by the yeast XPC homologue Rad4 and TFIIH in transcription initiation or DNA repair have been separately reported3-7. How two different lesion recognition pathways converge and how the XPB and XPD helicases of Core7 move the DNA lesion for verification are unclear. Here we report on structures revealing DNA lesion recognition by human XPC and DNA lesion hand-off from XPC to Core7 and XPA. XPA, which binds between XPB and XPD, kinks the DNA duplex and shifts XPC and the DNA lesion by nearly a helical turn relative to Core7. The DNA lesion is thus positioned outside of Core7, as would occur with RNA polymerase. XPB and XPD, which track the lesion-containing strand but translocate DNA in opposite directions, push and pull the lesion-containing strand into XPD for verification.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA , DNA , Fator de Transcrição TFIIH , Proteína de Xeroderma Pigmentoso Grupo A , Humanos , DNA/química , DNA/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição TFIIH/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Especificidade por Substrato , RNA Polimerases Dirigidas por DNA/metabolismo
2.
Cell ; 147(5): 1024-39, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22118460

RESUMO

The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.


Assuntos
Ubiquitina-Proteína Ligases/química , Animais , Cristalografia por Raios X , Proteínas Culina/química , Dano ao DNA , Proteínas de Ligação a DNA/química , Ativação Enzimática , Humanos , Modelos Moleculares , Ubiquitina-Proteína Ligases/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/química
3.
Nature ; 571(7764): E6, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31239520

RESUMO

In this Article, in Fig. 1a, the 5' and 3' labels were reversed in the DNA sequence, and Fig. 4 was missing panel labels a-e. These errors have been corrected online.

4.
Nature ; 571(7763): 79-84, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31142837

RESUMO

Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and DNA repair. In humans, the UV-damaged DNA-binding protein (UV-DDB) complex detects UV-light-induced pyrimidine dimers throughout the genome; however, it remains unknown how these lesions are recognized in chromatin, in which nucleosomes restrict access to DNA. Here we report cryo-electron microscopy structures of UV-DDB bound to nucleosomes bearing a 6-4 pyrimidine-pyrimidone dimer or a DNA-damage mimic in various positions. We find that UV-DDB binds UV-damaged nucleosomes at lesions located in the solvent-facing minor groove without affecting the overall nucleosome architecture. In the case of buried lesions that face the histone core, UV-DDB changes the predominant translational register of the nucleosome and selectively binds the lesion in an accessible, exposed position. Our findings explain how UV-DDB detects occluded lesions in strongly positioned nucleosomes, and identify slide-assisted site exposure as a mechanism by which high-affinity DNA-binding proteins can access otherwise occluded sites in nucleosomal DNA.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , DNA/ultraestrutura , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Dímeros de Pirimidina/análise , Microscopia Crioeletrônica , DNA/química , DNA/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Modelos Moleculares , Nucleossomos/genética , Nucleossomos/efeitos da radiação , Dímeros de Pirimidina/química , Dímeros de Pirimidina/genética , Termodinâmica , Raios Ultravioleta/efeitos adversos
5.
J Biol Chem ; 299(8): 105002, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394003

RESUMO

Acrylamide, a common food contaminant, is metabolically activated to glycidamide, which reacts with DNA at the N7 position of dG, forming N7-(2-carbamoyl-2-hydroxyethyl)-dG (GA7dG). Owing to its chemical lability, the mutagenic potency of GA7dG has not yet been clarified. We found that GA7dG undergoes ring-opening hydrolysis to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-[N-(2-carbamoyl-2-hydroxyethyl)formamido]pyrimidine (GA-FAPy-dG), even at neutral pH. Therefore, we aimed to examine the effects of GA-FAPy-dG on the efficiency and fidelity of DNA replication using an oligonucleotide carrying GA-FAPy-9-(2-deoxy-2-fluoro-ß-d-arabinofuranosyl)guanine (dfG), a 2'-fluorine substituted analog of GA-FAPy-dG. GA-FAPy-dfG inhibited primer extension by both human replicative DNA polymerase ε and the translesion DNA synthesis polymerases (Polη, Polι, Polκ, and Polζ) and reduced the replication efficiency by less than half in human cells, with single base substitution at the site of GA-FAPy-dfG. Unlike other formamidopyrimidine derivatives, the most abundant mutation was G:C > A:T transition, which was decreased in Polκ- or REV1-KO cells. Molecular modeling suggested that a 2-carbamoyl-2-hydroxyethyl group at the N5 position of GA-FAPy-dfG can form an additional H-bond with thymidine, thereby contributing to the mutation. Collectively, our results provide further insight into the mechanisms underlying the mutagenic effects of acrylamide.


Assuntos
Adutos de DNA , Mutagênicos , Humanos , Acrilamidas , Desoxiguanosina , DNA , Dano ao DNA , Replicação do DNA , Mutagênese , Mutagênicos/toxicidade , Contaminação de Alimentos
6.
Mol Cell ; 59(6): 1025-34, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26384665

RESUMO

Transcription factor IIH (TFIIH) is essential for both transcription and nucleotide excision repair (NER). DNA lesions are initially detected by NER factors XPC and XPE or stalled RNA polymerases, but only bulky lesions are preferentially repaired by NER. To elucidate substrate specificity in NER, we have prepared homogeneous human ten-subunit TFIIH and its seven-subunit core (Core7) without the CAK module and show that bulky lesions in DNA inhibit the ATPase and helicase activities of both XPB and XPD in Core7 to promote NER, whereas non-genuine NER substrates have no such effect. Moreover, the NER factor XPA activates unwinding of normal DNA by Core7, but inhibits the Core7 helicase activity in the presence of bulky lesions. Finally, the CAK module inhibits DNA binding by TFIIH and thereby enhances XPC-dependent specific recruitment of TFIIH. Our results support a tripartite lesion verification mechanism involving XPC, TFIIH, and XPA for efficient NER.


Assuntos
Adutos de DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição TFIIH/fisiologia , Proteína de Xeroderma Pigmentoso Grupo A/fisiologia , Animais , Cisplatino/química , Adutos de DNA/química , Reparo do DNA , DNA de Cadeia Simples/fisiologia , Proteínas de Ligação a DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ligação Proteica , Células Sf9 , Spodoptera , Fator de Transcrição TFIIH/química , Proteína de Xeroderma Pigmentoso Grupo A/química
7.
Genes Cells ; 26(5): 328-335, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33624391

RESUMO

SIRT2 and SIRT3 protein deacetylases maintain genome integrity and stability. However, their mechanisms for maintaining the genome remain unclear. To examine the roles of SIRT2 and SIRT3 in DSB repair, I-SceI-based GFP reporter assays for HR, single-strand annealing (SSA) and nonhomologous end joining (NHEJ) repair were performed under SIRT2- or SIRT3-depleted conditions. SIRT2 or SIRT3 depletion inhibited HR repair equally to RAD52 depletion, but did not affect SSA and NHEJ repairs. SIRT2 or SIRT3 depletion disturbed the recruitment of RAD51 to DSB sites, an essential step for RAD51-dependent HR repair, but not directly through RAD52 deacetylation. SIRT2 or SIRT3 depletion decreased the colocalization of γH2AX foci with RPA1, and thus, they might be involved in initiating DSB end resection for the recruitment of RAD51 to DSB sites at an early step in HR repair. These results show the novel underlying mechanism of the SIRT2 and SIRT3 functions in HR for genome stability.


Assuntos
Recombinação Homóloga/genética , Reparo de DNA por Recombinação , Sirtuína 2/metabolismo , Sirtuína 3/metabolismo , Acetilação , Quebras de DNA de Cadeia Dupla , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Rad51 Recombinase/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
8.
Nature ; 531(7596): 598-603, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029275

RESUMO

The cullin-RING ubiquitin E3 ligase (CRL) family comprises over 200 members in humans. The COP9 signalosome complex (CSN) regulates CRLs by removing their ubiquitin-like activator NEDD8. The CUL4A-RBX1-DDB1-DDB2 complex (CRL4A(DDB2)) monitors the genome for ultraviolet-light-induced DNA damage. CRL4A(DBB2) is inactive in the absence of damaged DNA and requires CSN to regulate the repair process. The structural basis of CSN binding to CRL4A(DDB2) and the principles of CSN activation are poorly understood. Here we present cryo-electron microscopy structures for CSN in complex with neddylated CRL4A ligases to 6.4 Å resolution. The CSN conformers defined by cryo-electron microscopy and a novel apo-CSN crystal structure indicate an induced-fit mechanism that drives CSN activation by neddylated CRLs. We find that CSN and a substrate cannot bind simultaneously to CRL4A, favouring a deneddylated, inactive state for substrate-free CRL4 complexes. These architectural and regulatory principles appear conserved across CRL families, allowing global regulation by CSN.


Assuntos
Biocatálise , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/ultraestrutura , Regulação Alostérica , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Complexo do Signalossomo COP9 , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas Culina/química , Proteínas Culina/metabolismo , Proteínas Culina/ultraestrutura , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Cinética , Modelos Moleculares , Complexos Multiproteicos/química , Peptídeo Hidrolases/química , Ligação Proteica , Ubiquitinação , Ubiquitinas/metabolismo
9.
J Cell Sci ; 132(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31492759

RESUMO

Centrin 2 is a small conserved calcium-binding protein that localizes to the centriolar distal lumen in human cells. It is required for efficient primary ciliogenesis and nucleotide excision repair (NER). Centrin 2 forms part of the xeroderma pigmentosum group C protein complex. To explore how centrin 2 contributes to these distinct processes, we mutated the four calcium-binding EF-hand domains of human centrin 2. Centrin 2 in which all four EF-hands had been mutated to ablate calcium binding (4DA mutant) was capable of supporting in vitro NER and was as effective as the wild-type protein in rescuing the UV sensitivity of centrin 2-null cells. However, we found that mutation of any of the EF-hand domains impaired primary ciliogenesis in human TERT-RPE1 cells to the same extent as deletion of centrin 2. Phenotypic analysis of the 4DA mutant revealed defects in centrosome localization, centriole satellite assembly, ciliary assembly and function and in interactions with POC5 and SFI1. These observations indicate that centrin 2 requires calcium-binding capacity for its primary ciliogenesis functions, but not for NER, and suggest that these functions require centrin 2 to be capable of forming complexes with partner proteins.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Centríolos/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , DNA Complementar/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
10.
PLoS Genet ; 14(3): e1007277, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29590107

RESUMO

The p300 and CBP histone acetyltransferases are recruited to DNA double-strand break (DSB) sites where they induce histone acetylation, thereby influencing the chromatin structure and DNA repair process. Whether p300/CBP at DSB sites also acetylate non-histone proteins, and how their acetylation affects DSB repair, remain unknown. Here we show that p300/CBP acetylate RAD52, a human homologous recombination (HR) DNA repair protein, at DSB sites. Using in vitro acetylated RAD52, we identified 13 potential acetylation sites in RAD52 by a mass spectrometry analysis. An immunofluorescence microscopy analysis revealed that RAD52 acetylation at DSBs sites is counteracted by SIRT2- and SIRT3-mediated deacetylation, and that non-acetylated RAD52 initially accumulates at DSB sites, but dissociates prematurely from them. In the absence of RAD52 acetylation, RAD51, which plays a central role in HR, also dissociates prematurely from DSB sites, and hence HR is impaired. Furthermore, inhibition of ataxia telangiectasia mutated (ATM) protein by siRNA or inhibitor treatment demonstrated that the acetylation of RAD52 at DSB sites is dependent on the ATM protein kinase activity, through the formation of RAD52, p300/CBP, SIRT2, and SIRT3 foci at DSB sites. Our findings clarify the importance of RAD52 acetylation in HR and its underlying mechanism.


Assuntos
Quebras de DNA de Cadeia Dupla , Histona Acetiltransferases/fisiologia , Histona Desacetilases/fisiologia , Recombinação Homóloga , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Acetilação , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Histona Acetiltransferases/genética , Histona Desacetilases/genética , Humanos , Microscopia de Fluorescência , Técnicas do Sistema de Duplo-Híbrido
11.
Genes Cells ; 23(3): 200-213, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29424068

RESUMO

CRL4Cdt2 ubiquitin ligase plays an important role maintaining genome integrity during the cell cycle. A recent report suggested that Cdk1 negatively regulates CRL4Cdt2 activity through phosphorylation of its receptor, Cdt2, but the involvement of phosphorylation remains unclear. To address this, we mutated all CDK consensus phosphorylation sites located in the C-terminal half region of Cdt2 (Cdt2-18A) and examined the effect on substrate degradation. We show that both cyclinA/Cdk2 and cyclinB/Cdk1 phosphorylated Cdt2 in vitro and that phosphorylation was reduced by the 18A mutation both in vitro and in vivo. The 18A mutation increased the affinity of Cdt2 to PCNA, and a high amount of Cdt2-18A was colocalized with PCNA foci during S phase in comparison with Cdt2-WT. Poly-ubiquitination activity to Cdt1 was concomitantly enhanced in cells expressing Cdt2-18A. Other CRL4Cdt2 substrates, Set8 and thymine DNA glycosylase, begin to accumulate around late S phase to G2 phase, but the accumulation was prevented in Cdt2-18A cells. Furthermore, mitotic degradation of Cdt1 after UV irradiation was induced in these cells. Our results suggest that CDK-mediated phosphorylation of Cdt2 inactivates its ubiquitin ligase activity by reducing its affinity to PCNA, an important strategy for regulating the levels of key proteins in the cell cycle.


Assuntos
Proteína Quinase CDC2/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/metabolismo , Proteína Quinase CDC2/genética , Células HEK293 , Células HeLa , Humanos , Fosforilação , Proteólise , Fase S , Ubiquitinação
12.
Mol Cell ; 43(5): 788-97, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884979

RESUMO

Translesion DNA synthesis, a process orchestrated by monoubiquitinated PCNA, is critical for DNA damage tolerance. While the ubiquitin-conjugating enzyme RAD6 and ubiquitin ligase RAD18 are known to monoubiquitinate PCNA, how they are regulated by DNA damage is not fully understood. We show that NBS1 (mutated in Nijmegen breakage syndrome) binds to RAD18 after UV irradiation and mediates the recruitment of RAD18 to sites of DNA damage. Disruption of NBS1 abolished RAD18-dependent PCNA ubiquitination and Polη focus formation, leading to elevated UV sensitivity and mutation. Unexpectedly, the RAD18-interacting domain of NBS1, which was mapped to its C terminus, shares structural and functional similarity with the RAD18-interacting domain of RAD6. These domains of NBS1 and RAD6 allow the two proteins to interact with RAD18 homodimers simultaneously and are crucial for Polη-dependent UV tolerance. Thus, in addition to chromosomal break repair, NBS1 plays a key role in translesion DNA synthesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Células Cultivadas , Reparo do DNA , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação , Raios Ultravioleta
13.
Genes Cells ; 22(4): 392-405, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28318075

RESUMO

Thymine DNA glycosylase (TDG) is a base excision repair (BER) enzyme, which is implicated in correction of deamination-induced DNA mismatches, the DNA demethylation process and regulation of gene expression. Because of these pivotal roles associated, it is crucial to elucidate how the TDG functions are appropriately regulated in vivo. Here, we present evidence that the TDG protein undergoes degradation upon various types of DNA damage, including ultraviolet light (UV). The UV-induced degradation of TDG was dependent on proficiency in nucleotide excision repair and on CRL4CDT2 -mediated ubiquitination that requires a physical interaction between TDG and DNA polymerase clamp PCNA. Using the Tdg-deficient mouse embryonic fibroblasts, we found that ectopic expression of TDG compromised cellular survival after UV irradiation and repair of UV-induced DNA lesions. These negative effects on cellular UV responses were alleviated by introducing mutations in TDG that impaired its BER function. The expression of TDG induced a large-scale alteration in the gene expression profile independently of its DNA glycosylase activity, whereas a subset of genes was affected by the catalytic activity of TDG. Our results indicate the presence of BER-dependent and BER-independent functions of TDG, which are involved in regulation of cellular DNA damage responses and gene expression patterns.


Assuntos
Reparo do DNA , Timina DNA Glicosilase/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Dano ao DNA , Humanos , Mutação , Timina DNA Glicosilase/química , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta
14.
Genes Cells ; 22(3): 310-327, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28233440

RESUMO

In the mammalian global genome nucleotide excision repair pathway, two damage recognition factors, XPC and UV-DDB, play pivotal roles in the initiation of the repair reaction. However, the molecular mechanisms underlying regulation of the lesion recognition process in the context of chromatin structures remain to be understood. Here, we show evidence that damage recognition factors tend to associate with chromatin regions devoid of certain types of acetylated histones. Treatment of cells with histone deacetylase inhibitors retarded recruitment of XPC to sites of UV-induced DNA damage and the subsequent repair process. Biochemical studies showed novel multifaceted interactions of XPC with histone H3, which were profoundly impaired by deletion of the N-terminal tail of histone H3. In addition, histone H1 also interacted with XPC. Importantly, acetylation of histone H3 markedly attenuated the interaction with XPC in vitro, and local UV irradiation of cells decreased the level of H3K27ac in the damaged areas. Our results suggest that histone deacetylation plays a significant role in the process of DNA damage recognition for nucleotide excision repair and that the localization and functions of XPC can be regulated by acetylated states of histones.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Linhagem Celular , Reparo do DNA , Histona Desacetilases/fisiologia , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
15.
Development ; 141(2): 269-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24335252

RESUMO

Ten-eleven translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). 5fC and 5caC can be excised and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. Genome-wide DNA methylation is erased in the transition from metastable states to the ground state of embryonic stem cells (ESCs) and in migrating primordial germ cells (PGCs), although some resistant regions become demethylated only in gonadal PGCs. Understanding the mechanisms underlying global hypomethylation in naive ESCs and developing PGCs will be useful for realizing cellular pluripotency and totipotency. In this study, we found that PRDM14, the PR domain-containing transcriptional regulator, accelerates the TET-BER cycle, resulting in the promotion of active DNA demethylation in ESCs. Induction of Prdm14 expression transiently elevated 5hmC, followed by the reduction of 5mC at pluripotency-associated genes, germline-specific genes and imprinted loci, but not across the entire genome, which resembles the second wave of DNA demethylation observed in gonadal PGCs. PRDM14 physically interacts with TET1 and TET2 and enhances the recruitment of TET1 and TET2 at target loci. Knockdown of TET1 and TET2 impaired transcriptional regulation and DNA demethylation by PRDM14. The repression of the BER pathway by administration of pharmacological inhibitors of APE1 and PARP1 and the knockdown of thymine DNA glycosylase (TDG) also impaired DNA demethylation by PRDM14. Furthermore, DNA demethylation induced by PRDM14 takes place normally in the presence of aphidicolin, which is an inhibitor of G1/S progression. Together, our analysis provides mechanistic insight into DNA demethylation in naive pluripotent stem cells and developing PGCs.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dioxigenases , Técnicas de Silenciamento de Genes , Impressão Genômica , Células Germinativas/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA , Transdução de Sinais , Timina DNA Glicosilase/antagonistas & inibidores , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Fatores de Transcrição/genética
16.
Mol Cell ; 34(4): 403-4, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19481520

RESUMO

Although CUL4-containing ubiquitin ligases regulate DNA repair and DNA damage checkpoints, Liu et al. (2009) report in this issue of Molecular Cell that Cul4a-deficient mice exhibit surprising resistance to ultraviolet-induced skin tumors, providing insight into how ubiquitination regulates genome integrity.


Assuntos
Proteínas Culina/metabolismo , Reparo do DNA , Animais , Proteínas Culina/genética , Dano ao DNA , Substâncias Macromoleculares , Camundongos , Ubiquitina/metabolismo
17.
Mol Cell ; 36(4): 642-53, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19941824

RESUMO

For mammalian nucleotide excision repair (NER), DNA lesions are recognized in at least two steps involving detection of unpaired bases by the XPC protein complex and the subsequent verification of injured bases. Although lesion verification is important to ensure high damage discrimination and the accuracy of the repair system, it has been unclear how this is accomplished. Here, we show that damage verification involves scanning of a DNA strand from the site where XPC is initially bound. Translocation by the NER machinery exhibits a 5'-to-3' directionality, strongly suggesting involvement of the XPD helicase, a component of TFIIH. Furthermore, the initial orientation of XPC binding is crucial in that only one DNA strand is selected to search for the presence of lesions. Our results dissect the intricate molecular mechanism of NER and provide insights into a strategy for mammalian cells to survey large genomes to detect DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , DNA/metabolismo , Xeroderma Pigmentoso/genética , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Sistema Livre de Células , DNA/química , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Ligação Proteica , Dímeros de Pirimidina/metabolismo , Fator de Transcrição TFIIH/metabolismo
18.
Nucleic Acids Res ; 43(3): 1700-13, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25628365

RESUMO

In mammalian nucleotide excision repair, the DDB1-DDB2 complex recognizes UV-induced DNA photolesions and facilitates recruitment of the XPC complex. Upon binding to damaged DNA, the Cullin 4 ubiquitin ligase associated with DDB1-DDB2 is activated and ubiquitinates DDB2 and XPC. The structurally disordered N-terminal tail of DDB2 contains seven lysines identified as major sites for ubiquitination that target the protein for proteasomal degradation; however, the precise biological functions of these modifications remained unknown. By exogenous expression of mutant DDB2 proteins in normal human fibroblasts, here we show that the N-terminal tail of DDB2 is involved in regulation of cellular responses to UV. By striking contrast with behaviors of exogenous DDB2, the endogenous DDB2 protein was stabilized even after UV irradiation as a function of the XPC expression level. Furthermore, XPC competitively suppressed ubiquitination of DDB2 in vitro, and this effect was significantly promoted by centrin-2, which augments the DNA damage-recognition activity of XPC. Based on these findings, we propose that in cells exposed to UV, DDB2 is protected by XPC from ubiquitination and degradation in a stochastic manner; thus XPC allows DDB2 to initiate multiple rounds of repair events, thereby contributing to the persistence of cellular DNA repair capacity.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Humanos , Ligação Proteica , Ubiquitinação , Raios Ultravioleta
19.
Biochem Biophys Res Commun ; 471(1): 117-22, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26837048

RESUMO

The cyclobutane pyrimidine dimer (CPD) is induced in genomic DNA by ultraviolet (UV) light. In mammals, this photolesion is primarily induced within nucleosomal DNA, and repaired exclusively by the nucleotide excision repair (NER) pathway. However, the mechanism by which the CPD is accommodated within the nucleosome has remained unknown. We now report the crystal structure of a nucleosome containing CPDs. In the nucleosome, the CPD induces only limited local backbone distortion, and the affected bases are accommodated within the duplex. Interestingly, one of the affected thymine bases is located within 3.0 Å from the undamaged complementary adenine base, suggesting the formation of complementary hydrogen bonds in the nucleosome. We also found that UV-DDB, which binds the CPD at the initial stage of the NER pathway, also efficiently binds to the nucleosomal CPD. These results provide important structural and biochemical information for understanding how the CPD is accommodated and recognized in chromatin.


Assuntos
DNA/ultraestrutura , Nucleossomos/efeitos da radiação , Nucleossomos/ultraestrutura , Dímeros de Pirimidina/química , Dímeros de Pirimidina/efeitos da radiação , Raios Ultravioleta , Sítios de Ligação , DNA/química , DNA/efeitos da radiação , Ligação de Hidrogênio , Conformação Molecular/efeitos da radiação , Conformação de Ácido Nucleico , Ligação Proteica
20.
Genes Cells ; 20(3): 191-202, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25482373

RESUMO

In eukaryotes, holo-Mediator consists of four modules: head, middle, tail, and CDK/Cyclin. The head module performs an essential function involved in regulation of RNA polymerase II (Pol II). We studied the human head module subunit MED17 (hMED17). Recent structural studies showed that yeast MED17 may function as a hinge connecting the neck and movable jaw regions of the head module to the fixed jaw region. Luciferase assays in hMED17-knockdown cells showed that hMED17 supports transcriptional activation, and pulldown assays showed that hMED17 interacted with Pol II and the general transcription factors TFIIB, TBP, TFIIE, and TFIIH. In addition, hMED17 bound to a DNA helicase subunit of TFIIH, XPB, which is essential for both transcription and nucleotide excision repair (NER). Because hMED17 associates with p53 upon UV-C irradiation, we treated human MCF-7 cells with either UV-C or the MDM2 inhibitor Nutlin-3. Both treatments resulted in accumulation of p53 in the nucleus, but hMED17 remained concentrated in the nucleus in response to UV-C. hMED17 colocalized with the NER factors XPB and XPG following UV-C irradiation, and XPG and XPB bound to hMED17 in vitro. These findings suggest that hMED17 may play essential roles in switching between transcription and NER.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Complexo Mediador/metabolismo , Fatores de Transcrição/metabolismo , Inibidores Enzimáticos/farmacologia , Células HeLa/efeitos da radiação , Humanos , Imidazóis/farmacologia , Células MCF-7/efeitos dos fármacos , Células MCF-7/efeitos da radiação , Complexo Mediador/genética , Piperazinas/farmacologia , Ligação Proteica , Transporte Proteico/efeitos da radiação , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Polimerase II/metabolismo , Ativação Transcricional , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa