Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 165(7): 1749-1761, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315482

RESUMO

Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.


Assuntos
Manutenção do Peso Corporal , Hipotálamo/citologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neurônios/metabolismo , Sinapses , Proteína Relacionada com Agouti/metabolismo , Animais , Homeostase , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
2.
Nucleic Acids Res ; 48(8): 4344-4356, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32187363

RESUMO

The genome is the blueprint for an organism. Interrogating the genome, especially locating critical cis-regulatory elements, requires deletion analysis. This is conventionally performed using synthetic constructs, making it cumbersome and non-physiological. Thus, we created Cas9-mediated Arrayed Mutagenesis of Individual Offspring (CAMIO) to achieve comprehensive analysis of a targeted region of native DNA. CAMIO utilizes CRISPR that is spatially restricted to generate independent deletions in the intact Drosophila genome. Controlled by recombination, a single guide RNA is stochastically chosen from a set targeting a specific DNA region. Combining two sets increases variability, leading to either indels at 1-2 target sites or inter-target deletions. Cas9 restriction to male germ cells elicits autonomous double-strand-break repair, consequently creating offspring with diverse mutations. Thus, from a single population cross, we can obtain a deletion matrix covering a large expanse of DNA at both coarse and fine resolution. We demonstrate the ease and power of CAMIO by mapping 5'UTR sequences crucial for chinmo's post-transcriptional regulation.


Assuntos
Sistemas CRISPR-Cas , Drosophila/genética , Edição de Genes , Mutagênese , Regiões 5' não Traduzidas , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR , Proteínas de Drosophila/genética , Genoma de Inseto , Mutação INDEL , Masculino , Proteínas do Tecido Nervoso/genética , Espermatozoides/metabolismo
3.
PLoS Genet ; 14(7): e1007552, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063705

RESUMO

In vivo direct conversion of differentiated cells holds promise for regenerative medicine; however, improving the conversion efficiency and producing functional target cells remain challenging. Ectopic Atoh1 expression in non-sensory supporting cells (SCs) in mouse cochleae induces their partial conversion to hair cells (HCs) at low efficiency. Here, we performed single-cell RNA sequencing of whole mouse sensory epithelia harvested at multiple time points after conditional overexpression of Atoh1. Pseudotemporal ordering revealed that converted HCs (cHCs) are present along a conversion continuum that correlates with both endogenous and exogenous Atoh1 expression. Bulk sequencing of isolated cell populations and single-cell qPCR confirmed 51 transcription factors, including Isl1, are differentially expressed among cHCs, SCs and HCs. In transgenic mice, co-overexpression of Atoh1 and Isl1 enhanced the HC conversion efficiency. Together, our study shows how high-resolution transcriptional profiling of direct cell conversion can identify co-reprogramming factors required for efficient conversion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reprogramação Celular/genética , Células Ciliadas Auditivas/fisiologia , Proteínas com Homeodomínio LIM/metabolismo , Regeneração/genética , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica/métodos , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Fatores de Transcrição/genética
4.
Development ; 143(3): 411-21, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26700685

RESUMO

A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.


Assuntos
Linhagem da Célula/genética , Drosophila melanogaster/genética , Marcação de Genes , Neurônios/citologia , Robótica , Transcriptoma/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(31): 11515-20, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049382

RESUMO

Asthma is a common debilitating inflammatory lung disease affecting over 200 million people worldwide. Here, we investigated neurogenic components involved in asthmatic-like attacks using the ovalbumin-sensitized murine model of the disease, and identified a specific population of neurons that are required for airway hyperreactivity. We show that ablating or genetically silencing these neurons abolished the hyperreactive broncho-constrictions, even in the presence of a fully developed lung inflammatory immune response. These neurons are found in the vagal ganglia and are characterized by the expression of the transient receptor potential vanilloid 1 (TRPV1) ion channel. However, the TRPV1 channel itself is not required for the asthmatic-like hyperreactive airway response. We also demonstrate that optogenetic stimulation of this population of TRP-expressing cells with channelrhodopsin dramatically exacerbates airway hyperreactivity of inflamed airways. Notably, these cells express the sphingosine-1-phosphate receptor 3 (S1PR3), and stimulation with a S1PR3 agonist efficiently induced broncho-constrictions, even in the absence of ovalbumin sensitization and inflammation. Our results show that the airway hyperreactivity phenotype can be physiologically dissociated from the immune component, and provide a platform for devising therapeutic approaches to asthma that target these pathways separately.


Assuntos
Asma/patologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Pneumonia/patologia , Sistema Respiratório/inervação , Células Receptoras Sensoriais/patologia , Animais , Asma/complicações , Hiper-Reatividade Brônquica/complicações , Deleção de Genes , Inativação Gênica , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/complicações , Pneumonia/fisiopatologia , Receptores de Lisoesfingolipídeo/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Nervo Vago/metabolismo , Nervo Vago/patologia
6.
Proc Natl Acad Sci U S A ; 111(14): 5397-402, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706869

RESUMO

Spatial patterns of gene expression in the vertebrate brain are not independent, as pairs of genes can exhibit complex patterns of coexpression. Two genes may be similarly expressed in one region, but differentially expressed in other regions. These correlations have been studied quantitatively, particularly for the Allen Atlas of the adult mouse brain, but their biological meaning remains obscure. We propose a simple model of the coexpression patterns in terms of spatial distributions of underlying cell types and establish its plausibility using independently measured cell-type-specific transcriptomes. The model allows us to predict the spatial distribution of cell types in the mouse brain.


Assuntos
Encéfalo/metabolismo , Expressão Gênica , Modelos Biológicos , Animais , Camundongos
7.
Genes Dev ; 23(18): 2179-91, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19696147

RESUMO

Little is known about the contribution of translational control to circadian rhythms. To address this issue and in particular translational control by microRNAs (miRNAs), we knocked down the miRNA biogenesis pathway in Drosophila circadian tissues. In combination with an increase in circadian-mediated transcription, this severely affected Drosophila behavioral rhythms, indicating that miRNAs function in circadian timekeeping. To identify miRNA-mRNA pairs important for this regulation, immunoprecipitation of AGO1 followed by microarray analysis identified mRNAs under miRNA-mediated control. They included three core clock mRNAs-clock (clk), vrille (vri), and clockworkorange (cwo). To identify miRNAs involved in circadian timekeeping, we exploited circadian cell-specific inhibition of the miRNA biogenesis pathway followed by tiling array analysis. This approach identified miRNAs expressed in fly head circadian tissue. Behavioral and molecular experiments show that one of these miRNAs, the developmental regulator bantam, has a role in the core circadian pacemaker. S2 cell biochemical experiments indicate that bantam regulates the translation of clk through an association with three target sites located within the clk 3' untranslated region (UTR). Moreover, clk transgenes harboring mutated bantam sites in their 3' UTRs rescue rhythms of clk mutant flies much less well than wild-type CLK transgenes.


Assuntos
Ritmo Circadiano/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/metabolismo , Animais , Comportamento Animal/fisiologia , Sítios de Ligação , Proteínas CLOCK , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Evolução Molecular , Expressão Gênica , Cabeça/fisiologia , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Neurosci ; 34(38): 12877-83, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232122

RESUMO

Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome.


Assuntos
Regulação para Baixo/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Neurônios/metabolismo , Animais , Adesão Celular/genética , Comunicação Celular/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Síndrome de Rett/genética
9.
RNA ; 15(4): 537-45, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19223442

RESUMO

Drosha is a type III RNase, which plays a critical role in miRNA biogenesis. Drosha and its double-stranded RNA-binding partner protein Pasha/DGCR8 likely recognize and cleave miRNA precursor RNAs or pri-miRNA hairpins cotranscriptionally. To identify RNAs processed by Drosha, we used tiling microarrays to examine transcripts after depletion of drosha mRNA with dsRNA in Drosophila Schneider S2 cells. This strategy identified 137 Drosha-regulated RNAs, including 11 putative pri-miRNAs comprising 15 annotated miRNAs. Most of the identified pri-miRNAs seem extremely large, >10 kb as revealed by both the Drosha knock-down strategy and by RNA PolII chromatin IP followed by Drosophila tiling microarrays. Surprisingly, more than a hundred additional RNAs not annotated as miRNAs are under Drosha control and are likely to be direct targets of Drosha action. This is because many of them encode annotated genes, and unlike bona fide pri-miRNAs, they are not affected by depletion of the miRNA processing factor, dicer-1. Moreover, application of the evofold analysis software indicates that at least 25 of the Drosha-regulated RNAs contain evolutionarily conserved hairpins similar to those recognized by the Drosha-Pasha/DGCR8 complex in pri-miRNAs. One of these hairpins is located in the 5' UTR of both pasha and mammalian DGCR8. These observations suggest that a negative feedback loop acting on pasha mRNA may regulate the miRNA-biogenesis pathway: i.e., excess Drosha cleaves pasha/DGCR8 primary transcripts and leads to a reduction in pasha/DGCR8 mRNA levels and Pasha/DGCR8 synthesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genoma de Inseto , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Regiões 5' não Traduzidas , Animais , Proteínas de Drosophila/química , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , Complexos Multiproteicos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas de Ligação a RNA/química , Ribonuclease III/química
10.
Expert Rev Proteomics ; 8(5): 591-604, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21999830

RESUMO

Single-cell analysis is gaining popularity in the field of mass spectrometry as a method for analyzing protein and peptide content in cells. The spatial resolution of MALDI mass spectrometry (MS) imaging is by a large extent limited by the laser focal diameter and the displacement of analytes during matrix deposition. Owing to recent advancements in both laser optics and matrix deposition methods, spatial resolution on the order of a single eukaryotic cell is now achievable by MALDI MS imaging. Provided adequate instrument sensitivity, a lateral resolution of approximately 10 µm is currently attainable with commercial instruments. As a result of these advances, MALDI MS imaging is poised to become a transformative clinical technology. In this article, the crucial steps needed to obtain single-cell resolution are discussed, as well as potential applications to disease research.


Assuntos
Biomarcadores/análise , Proteínas/análise , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Diagnóstico por Imagem , Humanos , Imuno-Histoquímica/métodos , Prognóstico
11.
J Neurosci ; 29(21): 7040-52, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19474331

RESUMO

Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are attributable to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. Although embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first 4 postnatal weeks and that these changes are correlated with primarily monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of two-pore K(+) leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells.


Assuntos
Potenciais de Ação/fisiologia , Redes Reguladoras de Genes/fisiologia , Interneurônios/fisiologia , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Citometria de Fluxo/métodos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/efeitos dos fármacos , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Interneurônios/classificação , Interneurônios/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Camundongos Transgênicos , Análise em Microsséries/métodos , Técnicas de Patch-Clamp
12.
Nat Neurosci ; 9(1): 99-107, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16369481

RESUMO

Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.


Assuntos
Expressão Gênica/fisiologia , Neurônios/classificação , Neurônios/ultraestrutura , Prosencéfalo/citologia , Animais , Proteínas de Bactérias/genética , Química Encefálica/genética , Interpretação Estatística de Dados , Eletrofisiologia , Citometria de Fluxo , Corantes Fluorescentes , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Hibridização In Situ , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Prosencéfalo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Elife ; 92020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913118

RESUMO

Inner ear cochlear spiral ganglion neurons (SGNs) transmit sound information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions, we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: Scrt2-P2A-tdTomato and Celf4-3xHA-P2A-iCreER-T2A-EGFP. Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.


Assuntos
Envelhecimento/genética , Perfilação da Expressão Gênica , Expressão Gênica , Neurônios/metabolismo , Gânglio Espiral da Cóclea/citologia , Transcriptoma , Animais , Encéfalo/metabolismo , Proteínas CELF/genética , Técnicas de Introdução de Genes , Camundongos , RNA-Seq , Gânglio Espiral da Cóclea/embriologia , Gânglio Espiral da Cóclea/metabolismo
14.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255422

RESUMO

Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.


Assuntos
Encéfalo/fisiologia , Linhagem da Célula , Drosophila melanogaster/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Encéfalo/citologia , Drosophila melanogaster/genética , Larva , Neurônios/citologia
15.
Elife ; 82019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31545163

RESUMO

Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/ß' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Animais , Drosophila , Perfilação da Expressão Gênica
16.
Elife ; 82019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30977723

RESUMO

Understanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here, we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity. Short homeobox transcription factors distinguish neuronal populations combinatorially, and exhibit extremely low transcriptional noise, enabling highly robust expression differences. Long neuronal effector genes, such as channels and cell adhesion molecules, contribute disproportionately to neuronal diversity, based on their patterns rather than robustness of expression differences. By linking transcriptional identity to genetic strains and anatomical atlases, we provide an extensive resource for further investigation of mouse neuronal cell types.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/citologia , Perfilação da Expressão Gênica , Neurônios/fisiologia , Animais , Camundongos
17.
Trends Neurosci ; 29(6): 339-45, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16714064

RESUMO

Neural circuits within the vertebrate brain are composed of highly diverse cell types. The exact extent of this diversity is a matter of continuing debate. For example, do cortical interneurons comprise a few, dozens or >100 distinct cell types? Recently, several groups have used microarrays to measure genome-wide gene expression profiles for specific neuronal cell types. These methods can offer an objective basis for neuronal classification. In this review, we argue that this approach should now be carried out more broadly and that it should be coupled to large-scale efforts to generate mouse driver lines in which tools for genetic manipulation, such as the Cre recombinase, are expressed in identified cell types within the brain. This would enable neuroscientists to begin to investigate more systematically the roles of specific genes in establishing particular cellular phenotypes, and also the roles of particular cell types within brain circuits. This review is part of the TINS special issue on The Neural Substrates of Cognition.


Assuntos
Encéfalo/citologia , Genômica , Neurônios/classificação , Neurônios/fisiologia , Animais , Perfilação da Expressão Gênica , Humanos , Rede Nervosa/citologia , Rede Nervosa/fisiologia
18.
Curr Opin Neurobiol ; 16(5): 571-6, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16962313

RESUMO

Distinct neuronal cell types acquire and maintain their identity by expressing different genes. Recently it has become feasible to measure this cell type specific expression by isolating and amplifying mRNA from small populations of fluorescently labeled neurons and probing this mRNA with microarrays. Prior to this, most neuronal gene expression studies used tissue homogenates or randomly selected single cells and were, therefore, not well suited to studying transcriptional differences between cell types. Microarray studies of purified cell types have enabled investigators to identify the transcriptional signatures of, for example, subtypes of pyramidal neurons and interneurons in the neocortex, modulatory dopaminergic and serotonergic neurons, and the striatal neurons that form the so-called 'direct' and 'indirect' pathways through the basal ganglia. These studies are opening up new approaches to understanding brain circuitry, plasticity and pathology and are refining the concept of the neuronal cell type.


Assuntos
Encéfalo/citologia , Expressão Gênica , Neurônios/citologia , Neurônios/fisiologia , Transcrição Gênica , Animais , Encéfalo/fisiologia , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
20.
Curr Biol ; 27(9): 1303-1313, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28434858

RESUMO

Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Esteroides/metabolismo , Animais , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Fator de Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa