RESUMO
A single-handed poly(quinoxaline-2,3-diyl) (PQX) has been found to serve as a new type of chiral shift reagent (CSR) for determining the enantiomeric ratio by NMR spectroscopy. Even though there is no specific binding site in the PQX, its nonbonding interaction with chiral analytes leads to a significant shift of the NMR chemical shift, allowing quantification of the enantiomeric ratio. The new type of CSR has the advantages of a wide scope of analytes including ethers, haloalkanes, and alkanes, easy tunability of the degree of chemical shifts by measurement temperature, and erasability of proton signals of CSR because of the short spin-spin (T2 ) relaxation of the macromolecular scaffold.
RESUMO
Enantioconvergent intramolecular coupling of α-(2-bromobenzoylamino)benzylboronic esters was achieved using a copper catalyst having helically chiral macromolecular bipyridyl ligand, PQXbpy. Racemic α-(2-bromobenzoylamino)benzylboronic esters were converted into (R)-configured 3-arylisoindolinones with high enantiopurity using right-handed helical PQXbpy as a chiral ligand in a toluene/CHCl3 mixed solvent. When enantiopure (R)- and (S)-configured boronates were separately reacted under the same reaction conditions, both afforded (R)-configured products through formal stereoinvertive and stereoretentive processes, respectively. From these results, a mechanism involving deracemization of organocopper intermediates in the presence of PQXbpy is assumed. PQXbpy switched its helical sense to left-handed when a toluene/1,1,2-trichloroethane mixed solvent was used, resulting in the formation of the corresponding (S)-products from the racemic starting material.
RESUMO
Enantiospecific intramolecular Suzuki-Miyaura-type coupling with α-(2-halobenzoylamino)benzylboronic esters to give 3-substituted isoindolinones is achieved by using copper catalysts with 2,2'-bipyridine-based achiral ligands. Enantioenriched α-aminobenzylboron reactants bearing a hydrogen atom at the boron-bound stereogenic carbons undergo stereoinvertive coupling in the presence of a 6-phenyl-2,2'-bipyridine ligand with high enantiospecificity. α-Aminobenzylboronates bearing fully substituted boron-bound stereogenic centers also gave the 3,3-disubstituted isoindolinones with stereospecific stereochemical inversion in the presence of simple 2,2'-bipyridine as a ligand.
RESUMO
Helical chirality of poly(quinoxaline-2,3-diyl)s bearing a boronyl pendant at the 5-position of the quinoxaline ring was induced by condensation with chiral guests such as a diol, diamine, and amino alcohol. Reversible induction of a single-handed helical structure was achieved by using less than an equimolar amount of chiral amino alcohols to the boronyl pendants. Majority-rule-effect-based chiral amplification on the polyquinoxaline main chain was demonstrated with chiral amino alcohols with low enantiomeric excess (ee). The helical macromolecular scaffold whose helicity was thus induced was utilized in palladium-catalyzed asymmetric silaboration of meso-methylenecyclopropane (up to 92% ee) by introducing (diarylphosphino)phenyl pendants at their side chains.
RESUMO
Small-angle neutron scattering (SANS) was used to examine dilute solutions of a poly(quinoxaline-2,3-diyl) (PQX) with (R)-2-octyloxymethyl side chains in deuterated THF or a mixture of deuterated 1,1,2-TCE and THF (8/2, v/v), in which the PQX adopts pure P- and M-helical structures. The structures of the PQX that were obtained based on the SANS experiments in combination with theoretical calculations suggest that in THF, the chiral side chains of the P-helical PQX are extended, whereas in the 1,1,2-TCE/THF mixture, the side chains of the M-helical PQX are folded. Consequently, P-helical structures should be preferred in good solvents such as THF, which solvate the extended side chains, whereas M-helical structures should be preferred in poor solvents such as 1,1,2-TCE, wherein the side chains adopt shrunken conformations with maximized van der Waals interactions between the side chains. This study thus reveals the first example for fully determined nuanced conformations of the side chains of synthetic polymers in solution based on SANS experiments and theoretical calculations.
RESUMO
Helically chiral poly(quinoxaline-2,3-diyl)s bearing 4-aminopyrid-3-yl pendants were synthesized as new helical-polymer-based chiral nucleophilic organocatalysts. The obtained chiral nucleophilic polymer catalysts exhibited high catalytic activity, enantioselectivity, and reusability in asymmetric Steglich rearrangement of oxazolyl carbonate to C-carboxyazlactone. The polyquinoxaline-based, helically chiral DMAP catalyst mediated intramolecular acyl transfer selectively, by contrast with known small-molecule-based chiral organocatalysts, which also mediate intermolecular acyl transfers.
RESUMO
A conversion of trimethylsilylalkanes into the corresponding alcohols is established based on an iridium-catalyzed, chemoselective C(sp3)-H borylation of the methyl group on silicon. The (borylmethyl)silyl group formed by C(sp3)-H borylation is treated with H2O2/NaOH, and the resulting (hydroxymethyl)silyl group is converted into a hydroxyl group by Brook rearrangement, followed by oxidation of the resulting methoxysilyl group under Tamao conditions. An alternative route proceeding through the formylsilyl group formed from a (hydroxymethyl)silyl group by Swern oxidation is also established. The method is applicable to substituted trimethylsilylcycloalkanes and 1,1-dimethyl-1-silacyclopentane for conversion into the corresponding stereodefined cycloalkyl alcohols and 1,4-butanediol.
RESUMO
Highly enantioselective cycloisomerization of N-methylanilines, bearing o-alkenyl groups, into indolines is established. An iridium catalyst bearing a bidentate chiral diphosphine effectively promotes the intramolecular addition of the C(sp3 )-H bond across a carbon-carbon double bond in a highly enantioselective fashion. The reaction gives indolines bearing a quaternary stereogenic carbon center at the 3-position. The reaction mechanism involves rate-determining oxidative addition of the N-methyl C-H bond, followed by intramolecular carboiridation and subsequent reductive elimination.
RESUMO
Catalytic hydroalkylation of an alkyne with methyl ether was accomplished. Intramolecular addition of the C-H bond of a methoxy group in 1-methoxy-2-(arylethynyl)benzenes across a carbon-carbon triple bond took place efficiently either in toluene at 110 °C or in p-xylene at 135 °C in the presence of an iridium catalyst. The initial 5-exo cyclization products underwent double-bond migration during the reaction to give 3-(arylmethyl)benzofurans in high yields.
RESUMO
Two poly(quinoxaline-2,3-diyl) copolymers bearing miscibility-enhancing 8-chlorooctyloxy and (S)-2-methylbutoxy or n-butoxy side chains were synthesized. After annealing in CHCl3 vapor, a polymer-blend film of these copolymers exhibited selective reflection of right-handed circularly polarized light (CPL) in the visible region. The handedness of the CPL reflected was completely inverted upon annealing of the film in THF vapor. Annealing in n-hexane vapor resulted in the phase separation of the polymer blend, which turned the selective reflection off. This three-way-switchable reflection, that is, reflection of right-handed or left-handed CPL, together with an OFF state, could be observed visually through right- and left-handed CPL filters.
RESUMO
A 4,4'-bipyridine-based catalyst system for diboration of pyrazine derivatives was established. The catalyst cycle consists of the following two steps: (1) reductive addition of the boron-boron bond of bis(pinacolato)diboron to 4,4'-bipyridine to form N,N'-diboryl-4,4'-bipyridinylidene and (2) oxidative boryl transfer from the intermediate to pyrazine to give N,N'-diboryl-1,4-dihydropyrazine with regeneration of 4,4'-bipyridine.
RESUMO
Chiral random poly(quinoxaline-2,3-diyl) polymers of the sergeants-and-soldiers-type (sergeant units bearing (S)-3-octyloxymethyl groups) adopt an M- or P-helical conformation in the presence of achiral units bearing propoxymethyl or butoxy groups (soldier units), respectively. Unusual bidirectional induction of the helical sense can be observed for a copolymer with butoxy soldier units upon changing the mole fraction of the sergeant units. In the presence of 16-20% of sergeant units, the selective induction of a P-helix was observed, while the selective induction of an M-helix was observed for a mole fraction of sergeant units of more than 60%. This phenomenon could be successfully employed to control the helical chirality of copolymers by applying either random or block copolymerization protocols. Random or block copolymerization of sergeant and soldier monomers in a 18:82 ratio resulted in the formation of 250mers with almost absolute P- or M-helical conformation, respectively (>99% ee). Incorporation of a small amount of coordination sites into the random and block copolymers resulted in chiral macromolecular ligands, which allowed the enantioselective synthesis of both enantiomers in the Pd-catalyzed asymmetric hydrosilylation of ß-methylstyrene.
RESUMO
A highly efficient majority-rules effect of poly(quinoxaline-2,3-diyl)s (PQXs) bearing 2-butoxymethyl chiral side chains at the 6- and 7-positions was established and attributed to large ΔG(h) values (0.22-0.41â kJ mol(-1)), which are defined as the energy difference between P- and M-helical conformations per chiral unit. A PQX copolymer prepared from a monomer derived from (R)-2-octanol (23%â ee) and a monomer bearing a PPh2 group adopted a single-handed helical structure (>99%) and could be used as a highly enantioselective chiral ligand in palladium-catalyzed asymmetric reactions (products formed with up to 94%â ee), in which the enantioselectivity could be switched by solvent-dependent inversion of the helical PQX backbone.
RESUMO
Poly(quinoxaline-2,3-diyl)s bearing (S)-2-methylbutyl, n-butyl, and 8-chlorooctyl groups as side chains were synthesized to fabricate dry solid polymer thin films. These films exhibited selective reflection of right-handed circular polarized light (CPL) in the visible region after annealing in CHCl3 vapor at room temperature. The handedness of reflected CPL was inverted to the left after annealing in 1,2-dichloroethane vapor. It was also found that the color of a particular single film along with the handedness of reflected CPL were fully tuned reversibly, upon exposure of the film to the vapor of various mixtures of chloroform and 1,2-dichloroethane in different ratios.
RESUMO
Poly(quinoxaline-2,3-diyl) containing (S)-3-octyloxymethyl side chains was synthesized to investigate the induction of a single-handed helical sense to the main chain in various alkane solvents. The polymer showed an efficient solvent dependent helix inversion between n-octane (M-helix) and cyclooctane (P-helix). After a screening of alkane solvents, it was found that linear alkanes having large molecular aspect ratios induced M-helical structure, and branched or cyclic alkanes having small molecular aspect ratios induced P-helical structure. A polymer ligand containing (S)-3-octyloxymethyl side chains and diphenylphosphino pendants also exhibited solvent-dependent helical inversion between n-octane and cyclooctane, leading to the highly enantioselective production of the both enantiomeric product in a palladium-catalyzed asymmetric hydrosilylation reaction of styrene (R-product 94% ee in n-octane and S-product 90% ee in cyclooctane).
RESUMO
Post-polymerization CH activation of poly(quinoxaline-2,3-diyl)-based helically chiral phosphine ligands (PQXphos) with palladium(II) acetate afforded chiral phosphapalladacycles quantitatively. Inâ situ generated palladacycles exhibited enantioselectivities up to 94 %â ee in the palladium-catalyzed asymmetric ring-opening arylation of 1,4-epoxy-1,4-dihydronaphthalenes with arylboronic acids.
RESUMO
Poly(quinoxaline-2,3-diyl) copolymers bearing various "sergeant" chiral units with common "soldier" achiral units have been synthesized to investigate the efficiency of screw-sense induction and its dependence on the nature of the solvents. Optically active 2-alkoxymethyl side chains located at the 6- and 7-positions of the quinoxaline ring induced a single-handed helical conformation more efficiently than 3-methylpentyl or 2-methylbutoxy chiral side chains. Among the 2-alkoxymethyl side chains, those bearing higher 2-alkoxy groups induced a single-handed screw sense more efficiently. For instance, a monomer unit bearing (R)-2-octyloxymethyl groups stabilized the P-helix by 1.01 kJ/mol, whereas the monomer bearing (S)-2-butoxymethyl groups stabilized the M-helix by 0.59 kJ/mol. The effect of the position of the sergeant units in the polymer main chain on the screw-sense induction was also investigated using copolymers in which the positions of the sergeant units were carefully controlled by their synthesis via living polymerization. Chiral units placed sparsely could induce single-handed helical structure efficiently. Chiral units bearing 2-alkoxymethyl, 3-methylpentyl, and 2-methylbutoxy groups showed solvent-dependent helix inversion in CHCl3 and 1,1,2-trichloroethane. No helix inversion was observed in those solvents with chiral units bearing 2-butoxy or (2-methylbutoxy)methyl side chains. The 40-mer of the (R)-2-octyloxymethyl units showed P-helical structures in THF, t-BuOMe, and c-C5H11OMe, toluene, pyridine, Et3N, 1-BuOH, CHCl3, CH2Cl2, 1,4-dichlorobutane, 1,1,-dichloroethane, and 1,1,1-trichloroethane, whereas M-helical structures were induced in 1-BuCN, 1-PrCN, 1,2-dichloroethane, 1,3-dichloropropane, and 2-BuOH.
Assuntos
Polímeros/química , Quinoxalinas/química , Estrutura Molecular , Polímeros/síntese química , Solventes/químicaRESUMO
A methyl group of methylchlorosilanes undergoes C-H borylation in an iridium-catalyzed reaction with bis(pinacolato)diboron in cyclohexane at 80 °C, giving (borylmethyl)chlorosilanes selectively.
Assuntos
Compostos de Boro/síntese química , Irídio/química , Compostos Organometálicos/química , Silanos/química , Silício/química , Compostos de Boro/química , Catálise , Estrutura MolecularRESUMO
Pyridine undergoes addition of pinacolborane at 50 °C in the presence of a rhodium catalyst, giving N-boryl-1,2-dihydropyridine in a high yield. The selective 1,2-hydroboration also takes place in the reactions of substituted pyridines. In the reaction of 3-substituted pyridines, 3-substituted N-boryl-1,2-dihydropyridines are formed regioselectively.
Assuntos
Compostos Organometálicos/química , Piridinas/química , Piridinas/síntese química , Ródio/química , Catálise , Estrutura Molecular , EstereoisomerismoRESUMO
The poly(quinoxaline-2,3-diyl)-based helically chiral phosphine ligands PQXphos exhibited high enantioselectivities up to 97% ee in palladium-catalyzed desymmetrization of meso-1,2-dialkylsubstituted-3-methylenecyclopropanes through silaborative cleavage of the C-C bond. The observed enantioselectivities were higher than those obtained with 2-diarylphosphino-1,1'-binaphthyl in our original report. Remarkable rate enhancement was also observed with a series of PQXphos in comparison with the corresponding low-molecular weight ligands.