Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502859

RESUMO

The Internet of Underwater Things (IoUTs) enables various underwater objects be connected to accommodate a wide range of applications, such as oil and mineral exportations, disaster detection, and tracing tracking systems. As about 71% of our earth is covered by water and one-fourth of the population lives around this, the IoUT expects to play a vital role. It is imperative to pursue reliable communication in this vast domain, as human beings' future depends on water activities and resources. Therefore, there is a urgent need for underwater communication to be reliable, end-to-end secure, and collision/void node-free, especially when the routing path is established between sender and sonobuoys. The foremost issue discussed in this area is its routing path, which has high security and bandwidth without simultaneous multiple reflections. Short communication range is also a problem (because of an absence of inter-node adjustment); the acoustic signals have short ranges and maximum-scaling factors that cause a delay in communication. Therefore, we proposed Rotational Orbit-Based Inter Node Adjustment (ROBINA) with variant Path-Adjustment (PA-ROBINA) and Path Loss (PL-ROBINA) for IoUTs to achive reliable communication between the sender and sonobuoys. Additionally, the mathematical-based path loss model was discussed to cover the PL-ROBINA strategy. Extensive simulations were conducted with various realistic parameters and the results were compared with state-of-the-art routing protocols. Extensive simulations proved that the proposed routing scheme outperformed different realistic parameters; for example, packet transmission 45% increased with an average end-to-end delay of only 0.3% respectively. Furthermore, the transmission loss and path loss (measured in dB) were 25 and 46 dB, respectively, compared with other algorithms, for example, EBER2 54%, WDFAD-BDR 54%, AEDG 49%, ASEGD 55%, AVH-AHH-VBF 54.5%, and TANVEER 39%, respectively. In addition, the individual parameters with ROBINA and TANVEER were also compared, in which ROBINA achieved a 98% packet transmission ratio compared with TANVEER, which was only 82%.


Assuntos
Internet das Coisas , Tecnologia sem Fio , Acústica , Redes de Comunicação de Computadores , Humanos , Órbita
2.
ACS Appl Mater Interfaces ; 16(24): 31543-31554, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38843450

RESUMO

To address the inherent brittleness of conventional transparent conductive oxides, researchers have focused on enhancing their flexibility. This is achieved by incorporating organic films to construct organic-inorganic hybrid layer-by-layer nanostructures, where the interlayer thickness and interface play pivotal roles in determining the properties. These factors are contingent on the type of material, processing conditions, and specific application requirements, making it essential to select the appropriate conditions. In this study, ZnO-zincone nanolaminate thin films were fabricated using atomic layer deposition and molecular layer deposition in various structural configurations. Transmission electron microscopy, X-ray diffraction, and scanning electron microscopy were used to conduct a thorough analysis of the thin-film growth and structural transformations resulting from the deposition conditions. Furthermore, the influence of structural differences at the interfaces on the mechanical properties of the films was investigated by employing both tensile and compression-bending fatigue tests. This comprehensive examination reveals noteworthy variations in the mechanical responses of the films. Thin films characterized by internal porosity and an intermixed amorphous structure demonstrated enhanced compressive toughness, whereas rigid organic layers improved flexibility. These findings offer valuable insights into the development of flexible, transparent multilayer films.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa