RESUMO
Omics approaches have been applied to understand the boosted productivity of natural products by industrial high-producing microorganisms. Here, with the updated genome sequence and transcriptomic profiles derived from high-throughput sequencing, we exploited comparative omics analysis to further enhance the biosynthesis of erythromycin in an industrial overproducer, Saccharopolyspora erythraea HL3168 E3. By comparing the genome of E3 with the wild type NRRL23338, we identified fragment deletions inside 56 coding sequences and 255 single-nucleotide polymorphisms over the genome of E3. A substantial number of genomic variations were observed in genes responsible for pathways which were interconnected to the biosynthesis of erythromycin by supplying precursors/cofactors or by signal transduction. Furthermore, the transcriptomic data suggested that genes involved in the biosynthesis of erythromycin were significantly upregulated constantly, whereas some genes in biosynthesis clusters of other secondary metabolites contained nonsense mutations and were expressed at extremely low levels. Through comparative transcriptomic analysis, l-glutamine/l-glutamate and 2-oxoglutarate were identified as reporter metabolites. Around the node of 2-oxoglutarate, genomic mutations were also observed. Based on the omics association analysis, readily available strategies were proposed to engineer E3 by simultaneously overexpressing sucB (coding for 2-oxoglutarate dehydrogenase E2 component) and sucA (coding for 2-oxoglutarate dehydrogenase E1 component), which increased the erythromycin titer by 71% compared to E3 in batch culture. This study provides more promising molecular targets to engineer for enhanced production of erythromycin by the overproducer.
Assuntos
Eritromicina , Saccharopolyspora , Proteínas de Bactérias/genética , Eritromicina/metabolismo , Genômica , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Transcriptoma/genéticaRESUMO
BACKGROUND: Glucoamylase is one of the most industrially applied enzymes, produced by Aspergillus species, like Aspergillus niger. Compared to the traditional ways of process optimization, the metabolic engineering strategies to improve glucoamylase production are relatively scarce. RESULTS: In the previous study combined multi-omics integrative analysis and amino acid supplementation experiment, we predicted four amino acids (alanine, glutamate, glycine and aspartate) as the limited precursors for glucoamylase production in A. niger. To further verify this, five mutants namely OE-ala, OE-glu, OE-gly, OE-asp1 and OE-asp2, derived from the parental strain A. niger CBS 513.88, were constructed respectively for the overexpression of five genes responsible for the biosynthesis of the four kinds of amino acids (An11g02620, An04g00990, An05g00410, An04g06380 and An16g05570). Real-time quantitative PCR revealed that all these genes were successfully overexpressed at the mRNA level while the five mutants exhibited different performance in glucoamylase production in shake flask cultivation. Notably, the results demonstrated that mutant OE-asp2 which was constructed for reinforcing cytosolic aspartate synthetic pathway, exhibited significantly increased glucoamylase activity by 23.5% and 60.3% compared to CBS 513.88 in the cultivation of shake flask and the 5 L fermentor, respectively. Compared to A. niger CBS 513.88, mutant OE-asp2 has a higher intracellular amino acid pool, in particular, alanine, leucine, glycine and glutamine, while the pool of glutamate was decreased. CONCLUSION: Our study combines the target prediction from multi-omics analysis with the experimental validation and proves the possibility of increasing glucoamylase production by enhancing limited amino acid biosynthesis. In short, this systematically conducted study will surely deepen the understanding of resources allocation in cell factory and provide new strategies for the rational design of enzyme production strains.
Assuntos
Ácido Aspártico/metabolismo , Aspergillus niger/genética , Citosol/metabolismo , Oxigênio/metabolismoRESUMO
BACKGROUND: Nicotinamide adenine dinucleotide phosphate (NADPH) is an important cofactor ensuring intracellular redox balance, anabolism and cell growth in all living systems. Our recent multi-omics analyses of glucoamylase (GlaA) biosynthesis in the filamentous fungal cell factory Aspergillus niger indicated that low availability of NADPH might be a limiting factor for GlaA overproduction. RESULTS: We thus employed the Design-Build-Test-Learn cycle for metabolic engineering to identify and prioritize effective cofactor engineering strategies for GlaA overproduction. Based on available metabolomics and 13C metabolic flux analysis data, we individually overexpressed seven predicted genes encoding NADPH generation enzymes under the control of the Tet-on gene switch in two A. niger recipient strains, one carrying a single and one carrying seven glaA gene copies, respectively, to test their individual effects on GlaA and total protein overproduction. Both strains were selected to understand if a strong pull towards glaA biosynthesis (seven gene copies) mandates a higher NADPH supply compared to the native condition (one gene copy). Detailed analysis of all 14 strains cultivated in shake flask cultures uncovered that overexpression of the gsdA gene (glucose 6-phosphate dehydrogenase), gndA gene (6-phosphogluconate dehydrogenase) and maeA gene (NADP-dependent malic enzyme) supported GlaA production on a subtle (10%) but significant level in the background strain carrying seven glaA gene copies. We thus performed maltose-limited chemostat cultures combining metabolome analysis for these three isolates to characterize metabolic-level fluctuations caused by cofactor engineering. In these cultures, overexpression of either the gndA or maeA gene increased the intracellular NADPH pool by 45% and 66%, and the yield of GlaA by 65% and 30%, respectively. In contrast, overexpression of the gsdA gene had a negative effect on both total protein and glucoamylase production. CONCLUSIONS: This data suggests for the first time that increased NADPH availability can indeed underpin protein and especially GlaA production in strains where a strong pull towards GlaA biosynthesis exists. This data also indicates that the highest impact on GlaA production can be engineered on a genetic level by increasing the flux through the pentose phosphate pathway (gndA gene) followed by engineering the flux through the reverse TCA cycle (maeA gene). We thus propose that NADPH cofactor engineering is indeed a valid strategy for metabolic engineering of A. niger to improve GlaA production, a strategy which is certainly also applicable to the rational design of other microbial cell factories.
Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Coenzimas/metabolismo , Glucana 1,4-alfa-Glucosidase/biossíntese , Engenharia Metabólica , Biossíntese de Proteínas , Coenzimas/genética , NADP/metabolismo , Via de Pentose FosfatoRESUMO
Aspergillus niger is widely used as a cell factory for homologous and heterologous protein production. As previous studies reported that reduced sporulation favors protein secretion in A. niger, in this study, we conducted a comparative genomic analysis of the non-sporulating industrially exploited A. niger strain LDM3 in China and the reference protein secretion strain CBS 513.88 to predict the key genes that might define the genetic basis of LDM3's high protein-producing potential in silico. After sequencing using a hybrid approach combining Illumina and PacBio sequencing platforms, a high-quality genome sequence of LDM3 was obtained which harbors 11,209 open reading frames (ORFs). LDM3 exhibits large chromosomal rearrangements in comparison to CBS 513.88. An alignment of the two genome sequences revealed that the majority of the 457 ORFs uniquely present in LDM3 possessed predicted functions in redox pathways, protein transport, and protein modification processes. In addition, bioinformatic analyses revealed the presence of 656 ORFs in LDM3 with non-synonymous mutations encoding for proteins related to protein translation, protein modification, protein secretion, metabolism, and energy production. We studied the impact of two of these on protein production in the established lab strain N402. Both tupA and prpA genes were selected because available literature suggested their involvement in asexual sporulation of A. niger. Our co-expression network analysis supportively predicted the role of tupA in protein secretion and the role of prpA in energy generation, respectively. By knockout experiments, we showed that the ΔtupA mutant displayed reduced sporulation (35%) accompanied by higher total protein secretion (65%) compared to its parental strain. Such an effect was, however, not observed in the ΔprpA mutant.
Assuntos
Aspergillus niger/genética , Proteínas Fúngicas/genética , Genômica , Via Secretória/genética , Biologia Computacional , Simulação por Computador , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Transporte Proteico , Análise de Sequência de DNARESUMO
Astrocytes are the most abundant and widespread glial cells in the central nervous system. The heterogeneity of astrocytes plays an essential role in spinal cord injury (SCI) repair. Decellularised spinal cord matrix (DSCM) is advantageous for repairing SCI, but little is known regarding the exact mechanisms and niche alterations. Here, we investigated the DSCM regulatory mechanism of glial niche in the neuro-glial-vascular unit using single-cell RNA sequencing. Our single cell sequencing, molecular and biochemical experiments validated that DSCM facilitated the differentiation of neural progenitor cells through increasing the number of immature astrocytes. Upregulation of mesenchyme-related genes, which maintained astrocyte immaturity, causing insensitivity to inflammatory stimuli. Subsequently, we identified serglycin (SRGN) as a functional component of DSCM, which involves inducing CD44-AKT signalling to trigger human spinal cord-derived primary astrocytes (hspASCs) proliferation and upregulation of genes related to epithelial-mesenchymal transition, thus impeding astrocyte maturation. Finally, we verified that SRGN-COLI and DSCM had similar functions in the human primary cell co-culture system to mimic the glia niche. In conclusion, our work revealed that DSCM reverted astrocyte maturation and altered the glia niche into the repairing phase through the SRGN-mediated signalling pathway.
Assuntos
Neuroglia , Traumatismos da Medula Espinal , Humanos , Astrócitos/metabolismo , Proteoglicanas/metabolismo , Traumatismos da Medula Espinal/metabolismoRESUMO
Formation of chlorate (ClO3-) and perchlorate (ClO4-) as by-products in electrooxidation process has raised concern. In the present study, the formation of ClO3- and ClO4- in the presence of 1.0 mM Cl- on boron doped diamond (BDD) and Magneli phase titanium suboxide (Ti4O7) anodes were evaluated. The Cl- was transformed to ClO3- (temporal maximum 276.2 µM) in the first 0.5 h on BDD anodes with a constant current density of 10 mA cm2, while approximately 1000 µM ClO4- was formed after 4.0 h. The formation of ClO3- on the Ti4O7 anode was slower, reaching a temporary maximum of approximately 350.6 µM in 4.0 h, and the formation of ClO4- was also slower on the Ti4O7 anode, taking 8.0 h to reach 780.0 µM. Compared with the BDD anode, the rate of ClO3- and ClO4- formation on the Ti4O7 anode were always slower, regardless of the supporting electrolytes used in the experiments, including Na2SO4, NaNO3, Na2B4O7, and Na2HPO4. It is interesting that the formation of ClO4- during electrooxidation was largely mitigated or even eliminated, when methanol, KI, and H2O2 were included in the reaction solutions. The mechanism of the inhibition on Cl- transformation by electrooxidation was explored.
Assuntos
Percloratos , Poluentes Químicos da Água , Boro , Cloratos , Diamante , Eletrodos , Peróxido de Hidrogênio , Metanol , Oxirredução , Titânio/farmacologia , Poluentes Químicos da Água/análiseRESUMO
The use of differentiating human induced pluripotent stem cells (hiPSCs) in mini-tissue organoids provides an invaluable resource for regenerative medicine applications, particularly in the field of disease modeling. However, most studies using a kidney organoid model, focused solely on the transcriptomics and did not explore mechanisms of regulating kidney organoids related to metabolic effects and maturational phenotype. Here, we applied metabolomics coupled with transcriptomics to investigate the metabolic dynamics and function during kidney organoid differentiation. Not only did we validate the dominant metabolic alteration from glycolysis to oxidative phosphorylation in the iPSC differentiation process but we also showed that glycine, serine, and threonine metabolism had a regulatory role during kidney organoid formation and lineage maturation. Notably, serine had a role in regulating S-adenosylmethionine (SAM) to facilitate kidney organoid formation by altering DNA methylation. Our data revealed that analysis of metabolic characterization broadens our ability to understand phenotype regulation. The utilization of this comparative omics approach, in studying kidney organoid formation, can aid in deciphering unique knowledge about the biological and physiological processes involved in organoid-based disease modeling or drug screening.
RESUMO
Oxygen limitation is regarded as a useful strategy to improve enzyme production by mycelial fungus like Aspergillus niger. However, the intracellular metabolic response of A. niger to oxygen limitation is still obscure. To address this, the metabolism of A. niger was studied using multi-omics integrated analysis based on the latest GEMs (genome-scale metabolic model), including metabolomics, fluxomics and transcriptomics. Upon sharp reduction of the oxygen supply, A. niger metabolism shifted to higher redox level status, as well as lower energy supply, down-regulation of genes for fatty acid synthesis and a rapid decrease of the specific growth rate. The gene expression of the glyoxylate bypass was activated, which was consistent with flux analysis using the A. niger GEMs iHL1210. The increasing flux of the glyoxylate bypass was assumed to reduce the NADH formation from TCA cycle and benefit maintenance of the cellular redox balance under hypoxic conditions. In addition, the relative fluxes of the EMP pathway were increased, which possibly relieved the energy demand for cell metabolism. The above multi-omics integrative analysis provided new insights on metabolic regulatory mechanisms of A. niger associated with enzyme production under oxygen-limited condition, which will benefit systematic design and optimization of the A. niger microbial cell factory.
Assuntos
Adaptação Fisiológica , Aspergillus niger , Proteínas Fúngicas , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Microbiologia Industrial , Modelos Biológicos , Aspergillus niger/enzimologia , Aspergillus niger/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Genômica , MetabolômicaRESUMO
Aspergillus niger, as an important industrial fermentation strain, is widely applied in the production of organic acids and industrial enzymes. With the development of diverse omics technologies, the data of genome, transcriptome, proteome and metabolome of A. niger are increasing continuously, which declared the coming era of big data for the research in fermentation process of A. niger. The data analysis from single omics and the comparison of multi-omics, to the integrations of multi-omics based on the genome-scale metabolic network model largely extends the intensive and systematic understanding of the efficient production mechanism of A. niger. It also provides possibilities for the reasonable global optimization of strain performance by genetic modification and process regulation. We reviewed and summarized progress in omics research of A. niger, and proposed the development direction of omics research on this cell factory.